[2311.15892]

Precise calculations for decays of Higgs bosons in extended Higgs sectors

Kodai Sakurai (U. of Warsaw/Tohoku U.)

In collaboration with

Masashi Aiko^A, Shinya Kanemura^B, Mariko Kikuchi^C, Kei Yagyu^B

^A: KEK (Japan), ^B: Osaka U. (Japan), ^C: Nihon U. (Japan)

EPIPHANY Conference Jan. 7th-13th, 2023, Krakow, Poland

The shape of the Higgs sector is unknown

• Extended Higgs sector is interesting possibility for new physics.

$$\Phi_{\rm SM} + \Phi' + \dots$$

Dark matter, Neutrino masses, Baryon asymmetry of the Universe, muon-2, W mass, GWs, ...

• It is not completely excluded by the current LHC experiments.

Reconstructing Higgs sector is an important task for finding new physics.

How is the Higgs sector tested?

A combination of these two ways can test the Higgs sector.

Contents

• Introduction

- Model
 - 2HDM, motivations.
- Radiative corrections to Higgs decays
 - -HCOUP, results for A—>Zh and h—>ZZ*
- Summary

Two Higgs doublet models (2HDMs) [1/2]

2HDM is a simple example of the extended Higgs sector. It has several motivations to study.

Higgs potential

$$V = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}].$$

• Softly broken Z_2 symmetry is imposed.

 $\Phi_1 \rightarrow \Phi_1, \quad \Phi_2 \rightarrow -\Phi_2$

Component fields and physical states

$$\Phi_{i} = \begin{bmatrix} w_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + h_{i} + iz_{i}) \end{bmatrix}, \quad (i = 1, 2), \qquad \begin{pmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}, \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{0} \\ A \end{pmatrix}, \\ \begin{pmatrix} h_{1} \\ h_{2} \end{pmatrix} = R(\alpha) \begin{pmatrix} H \\ h \end{pmatrix}, \quad R(\theta) = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$3 \text{ of 8 d.o.f are } G^{0}, G^{\pm} \qquad h : \text{SM-like Higgs boson}$$

$$H, A, H^{\pm} : \text{Heavy Higgs bosons}$$

Two Higgs doublet models (2HDMs) [2/2]

Model parameters

$$M^2 = \frac{m_3^2}{\cos\beta\sin\beta}$$

$$m_{H,A,H^{\pm}}, M^2, \sin(\beta - \alpha), \tan\beta,$$

 $v \ (= 246 \text{GeV}), m_h \ (= 125 \text{GeV})$

Yukawa sector

 m_{1-3}, λ_{1-5}

- Due to Z_2 symmetry, either Φ_1 or Φ_2 couple with each matter field.
 - \rightarrow Flavor-changing neutral current (FCNC) is forbidden at the tree level.
- There are 4 types of interactions.

$$-\mathcal{L}_Y = Y_u \overline{Q}_L i \sigma_2 \Phi_u^* u_R + Y_d \overline{Q}_L \Phi_d d_R + Y_e \overline{L}_L \Phi_e e_R + \text{h.c.}$$

	Φ_u	Φ_d	Φ_e	
Type I	Φ_2	Φ_2	Φ_2	Light H^{\pm} scenario
Type II	Φ_2	Φ_1	Φ_1	MSSM
Type X	Φ_2	Φ_2	Φ_1	Radiative seesaw models
Type Y	Φ_2	Φ_1	Φ_2	_

Decoupling limit and alignment limit

Alignment limit:
$$\alpha \rightarrow \beta - \pi/2$$

- All scalars are diagonalized by β : $\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = R(\beta) \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \stackrel{i}{\Rightarrow} h$ $\stackrel{i}{\Rightarrow} H, A, H^{\pm}$
- Higgs boson couplings coincide with the SM:

$$\kappa_V = \sin(\beta - \alpha) \rightarrow 1$$

$$\kappa_f = \sin(\beta - \alpha) + \zeta_f \cos(\beta - \alpha) \rightarrow 1$$

Decoupling limit: $M^2 \to \infty$

- Heavy Higgs masses is governed by $M^2:\ m_{\Phi}^2\sim M^2+f(\lambda_i)v^2$
- All effects of heavy Higgs is suppressed by $1/M^2$.

The relation between α and M

$$\tan 2(\beta - \alpha) = \frac{\sum_{i} c_{i} \lambda_{i} v^{2}}{\sum_{i} c_{i} \lambda_{i} v^{2} + M^{2}} \xrightarrow{M^{2} \to 0} \mathbf{0}$$

- The decoupling limit leads to the alignment limit (if λ_i perturbative).

- The opposite is not true :
$$0 = \sum_{\substack{Alignment\\limit}} c_i \lambda_i v^2$$
 This doesn't depend on *M*.
 $\alpha \to \beta - \pi/2$ $M^2 \to \infty$

In 2HDM, alignment without decoupling scenario is possible.

counterexample: MSSM

$$\alpha \rightarrow \beta - \pi/2$$
 $m_A^2 \rightarrow \infty$

$$\frac{\tan 2\alpha}{\tan 2\beta} = \frac{m_H^2/m_A^2 + m_h^2/m_A^2}{1 + m_z^2/m_A^2}$$
$$m_H^2 = m_A^2 + m_Z^2(1 - \cos^2 2\beta)$$

Distinct scenarios [1/3]

We can describe the model parameter space by the decoupling parameter and the alignment parameter.

Decoupling limit SM like-limit $1 - \sin(\beta - \alpha)$ **Alignment limit**

Distinct scenarios [2/3]

Exact alignment or nearly alignment scenarios are favored.

[ATLAS collaboration, PRD 101, 012002 (2020)]

Synergy between direct and indirect searches[1/2]

Exact alignment scenario: $sin(\beta - \alpha) = 1$

[M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu, NPB 966 (2021) 115375]

Direct searches : Lower bounds for m_{Φ} and $\tan \beta$ are given.

Indirect searches : No sensitivity since Higgs couplings do not deviate.

Synergy between direct and indirect searchesc [2/2]

Direct searches: $A \to Zh$ and $H \to hh$ give wider sensitivity regions for $(m_{\Phi}, \tan \beta)$ plane.

Indirect searches: If a deviation in hZZ founds, the upper bounds for m_{Φ} are given.

→ Most parameter space can be surveyed by the combination of scalar-to-scalar decays and precision measurements of the Higgs coupling.

Importance of NLO corrections to heavy Higgs

Sensitivity regions by direct searches are drastically changed by $\sin(\beta - \alpha)$, especially for BRs.

The loop effect on heavy Higgs decays can be significant.

$$\begin{split} \Gamma^{\rm NLO}_{S\to SV} &= \tilde{\Gamma}^{\rm LO} (c_{\beta-\alpha}^2 + c_{\beta-\alpha} \Delta^{\rm NLO}) \\ \\ \Delta^{\rm NLO} &> c_{\beta-\alpha} \,? \end{split}$$

Our interest : impact of NLO corrections on heavy Higgs boson decays. Correlation between decays of heavy Higgs and *h(125)*.

H-COUP ver. 3

http://www-het.phys.sci.osaka-u.ac.jp/~hcoup/

- Fortran program to evaluate the NLO EW corrections and (N)NLO QCD corrections to various Higgs decays.
- Outputs (EW correction: On-shell scheme, QCD correction:MS scheme)
 - *h*: On-shell 2-body decays (e.g., $h \rightarrow \bar{f}f$)

Off-shell 3-body decays (e.g., $h \rightarrow ZZ^* \rightarrow Z\bar{f}f$)

 H, A, H^{\pm} : On-shell 2-body decays (e.g., $A \rightarrow \overline{f}f, Zh$)

Model Two Higgs doublet models (Type I, Type II, Type X, Type Y)
 Inert doublet model

Higgs singlet model (without global symmetry)

Other public tools

• 2HDECAY, sHDECAY, NHDECAY

[M. Krause, M. Mühlleitner, M. Spira, CPC 246 (2020) 106852],[M. Krause, M. Mühlleitner, 1904.02103][F. Egle, M. Mühlleitner, ,R. Santos, J. Viana, JHEP 11 (2023) 116]]

- 2-body decays of all Higgs boson with NLO EW and the state of the art QCD corrections.
- Model: THDMs (2HDECAY), the Singlet extension of the SM with Z_2 (sHDECAY), THDMs + real singlet (NHDECAY)
- PROPHECY4F [L. Altenkamp, S. Dittmaier, H. Rzehak, JHEP 1803 (2018) 110]
 - CP-even Higgs decays into 4 fermions with NLO EW and QCD corrections.
 - Model: THDMs, the Singlet extension of the SM with Z_2 .
- Flexibledecay [P. Athron, A. Büchner, et. al., Comput.Phys.Commun. 283, (2023) 108584]
 - 2-body decays of neutral Higgs bosons with SM QCD/EW corrections in HSM, Type II 2HDM, CMSSM, MRMSSM.
 - BSM effect is at LO.

Numerical analysis

h	Н	A	H^{\pm}
$h \to f\bar{f}$	$H \to f\bar{f}$	$A \to f\bar{f}$	$H^{\pm} \to f f'$
$h \to ZZ^*$	$H \to ZZ, WW$	$A \to ZZ, WW$	$H^{\pm} \to Wh$
$h \to WW^*$	$H \to hh$	$A \to Zh$	$H^{\pm} \to WH, WA$
$h \to gg$	$H \to ZA, WH^{\pm}$	$A \to HZ, WH^{\pm}$	$H^{\pm} \to W\gamma, \ WZ$
$h \to \gamma \gamma, Z \gamma$	$H \to gg$	$A \to gg$	
	$H \to \gamma \gamma, Z \gamma$	$A \to \gamma \gamma, Z \gamma$	

• We chose $A \to Zh$ and $h \to ZZ^*$ to illustrate the NLO corrections.

 $A \rightarrow Zh$: Suppression of $\Gamma_{A \rightarrow Zh}^{LO}$ $h \rightarrow ZZ^*$: precise measurement in future colliders (e.g. 0.76% @ILC)

• Benchmark scenarios for alignment w.o. decoupling ($|c_{\beta-\alpha}| < 0.1$)

(I) $m_A = m_{H^{\pm}} = 300 \text{GeV}$ in Type I 2HDM The scenario can be explored by HL-LHC.

(II) $m_A = m_{H^{\pm}} = 800 \text{GeV}$ in Type I,II 2HDMs

A realistic scenario for Type II due to $B \rightarrow X_s \gamma \ (m_{H^{\pm}} \gtrsim 600 \text{GeV})$.

Non-decoupling effects in $\Gamma_{A \rightarrow Zh}$

- Some diagrams are not suppressed by $c_{\beta-lpha}$.

.____[%] (HZ≁–A)

• Fermion loop and Boson loop are destructive.

→ Total corrections reach ~15%.

[M. Aiko, S. Kanemura, KS]

Scenario I: BR(A \rightarrow Zh) vs $\Delta \kappa_V$ at LO [M. Aiko, S. Kanemura, KS]

• $\Delta \kappa_Z$ and BR($A \rightarrow Zh$) are governed by $c_{\beta-\alpha}^2$. Positive correlation.

$$\Delta \kappa_Z = s_{\beta-\alpha} - 1 \simeq -c_{\beta-\alpha}^2/2 , \ BR(A \to Zh) \simeq c_{\beta-\alpha}^2 \frac{m_A^3}{16\pi\Gamma_{\rm tot}^A v^2}$$

• The maximum of $\Delta \kappa_Z$ is 0.5% at LO.

Scenario I: BR(A -> Zh) vs $\Delta \kappa_V$ at NLQ. Aiko, S. Kanemura, KS]

Scenario I: BR(A \rightarrow Zh) vs $\Delta \kappa_V$ at NLQ. Aiko, S. Kanemura, KS]

 $M^2 \simeq 0, c_{\beta-\alpha} \simeq 0$: Nondecoupling effect of H,A, H^{\pm} enhances $\Delta \kappa_Z \rightarrow \Delta \kappa_Z \neq 0$ but BR~1%

Scenario I: BR(A -> Zh) vs $\Delta \kappa_V$ at NLQ. Aiko, S. Kanemura, KS]

 $M^2 \simeq 0, c_{\beta-\alpha} \simeq 0$: Nondecoupling effect of H,A, H^{\pm} enhances $\Delta \kappa_Z \rightarrow \Delta \kappa_Z \neq 0$ but BR~1%

 $M^2 \simeq m_A^2, |c_{\beta-\alpha}| \sim 0.1$: Nondecoupling effect of H can affect $\rightarrow \Delta \kappa_Z \sim 0$ but BR~O(10)%

Dominant diagrams : $h \longrightarrow \lambda_{HHH} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}, \beta \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}, \beta \in \mathcal{A},$

Scenario I: NLO corrections for BR(A -> Zh)

 $|\Delta \kappa_Z| \lesssim 0.5\% : \Delta^{\text{BR}} \text{ can exceed 100\%} \qquad |\mathcal{M}(A \to Zh)|^2 = C_{AZh} \left(\frac{g_Z^2}{4} c_{\beta-\alpha}^2 + g_Z c_{\beta-\alpha} \text{Re}\Gamma_{AZh}^{\text{loop}} + |\Gamma_{AZh}^{\text{loop}}|^2 \right)$ Tree 1-loop

Scenario II: Correlation in h(125) decays

• HSM, IDM: $\Delta R_{h \to \tau \tau} \simeq \Delta R_{h \to ZZ}$, 2HDMs: $|\Delta R_{h \to \tau \tau}| \gg \Delta R_{h \to ZZ}$

→ The models can be distinguished from the difference in the gradients

• If $m_A - m_H \simeq 50 \text{GeV}$, the loop effect of A, H^{\pm} make $\Delta R_{h \to ZZ^*}$ small.

Summary

- The tree-level contributions to scalar-to-scalar decays ($A\to Zh$ and $H\to hh$) are suppressed by the scalar mixing $c_{\beta-\alpha}$.
- We evaluated the NLO corrections by using H-COUP.
- We investigated the impact of NLO corrections to $A \rightarrow Zh$ and $h \rightarrow ZZ^*$.
- We found that the NLO corrections to $A \to Zh$ dominate if $|(\Gamma_{h\to ZZ^*}/\Gamma_{h\to ZZ^*}^{\rm SM})^{1/2} 1| < 0.5 \%$.
- Also, the correlation between $A \to Zh$ and $h \to ZZ^*$ can be different from the tree-level result.

Back up

Impact of the precise measurements

Ex.) S, T parameter

Top mass had been severely restricted before the discovery.

$$\alpha_{\rm EM}T \simeq \frac{3G_F}{8\sqrt{2}\pi^2} (m_t^2 - m_Z^2 s_W^2 \log \frac{m_h^2}{m_Z^2})$$
Non-decoupling effect

Same things can be applied to the Higgs physics.

Renormalization

Details of the calculations of NLO EW corrections

Renormalization scheme : on-shell scheme

 δT_h , δT_H : standard tadpole scheme, alternative tadpole scheme

Renormalization of tadpoles

• Standard tadpole scheme (STS) [W.F.L. Hollik, Fortschr. Phys. 38 (1990) 165.]

$$\begin{bmatrix} t_i^B = t_i^R + \delta t_i & (i = h, H) \\ \hat{\Gamma}_i = t_R + \delta t_i + \Gamma_i^{1\text{PI}} \end{bmatrix}$$

$$\underbrace{(t_i^R = 0, \hat{\Gamma}_i = 0)}_{\delta t_i} = -\Gamma_i^{1\text{PI}}$$

• Alternative tadpole scheme (ATS)

$$\begin{bmatrix} \Phi_m \to \Phi_m + \Delta v_m & (m = 1, 2) \\ \hat{\Gamma}_i = t^B + f(\Delta v_m) + \Gamma_i^{1\text{PI}} \end{bmatrix}$$

$$t_i^B = 0, \hat{\Gamma}_i = 0)$$

$$\Delta v_m = \sum R_{mi} \Gamma_i^{1\text{PI}} / m_i^2$$

[J. Fleischer and F. Jegerlehner, PRD23, 2001 (1981)]

- Difference between STS and ATS
- While in STS tadpole affects only scalar self-energy, in ATS all self-energy has tadpole contributions.
- This makes self-energy gauge-independent at on-shell mass.

Gauge invariant CTs can be obtained in ATS.

$$\hat{\Pi}_{ij}^{\text{ATS}} = \hat{\Pi}_{ij} + \underbrace{\begin{array}{c} 1 \\ \vdots \\ \vdots \end{array}}^{1 \text{PI}}$$

Gauge dependence in mixing angles

- In renormalization of mixing angle, there is a technical issue, namely, gauge dependence appears. [Yamada, PRD64(2001)036008]
- We can check gauge dependence from Nielsen identify:

$$\partial_{\xi}\Pi_{ij} = (2p^2 - m_i^2 - m_j^2)\tilde{\Pi}_{ij}$$

 $i, j = h, H, A, H^{\pm}$

 $\tilde{\Pi}_{ij}$: function of loop functions

 $-i = j = h: \quad \delta m_h^2 = \Pi_{hh}^{1\text{PI}}(m_h^2)$ $\partial_{\xi} \Pi_{hh}(p^2) = 0 \quad \text{at } p^2 = m_h^2 \qquad \Longrightarrow \qquad \delta m_h^2 \text{ is gauge-independent.}$ $-i = h, j = H: \quad \delta \alpha = \{\Pi_{hH}^{1\text{PI}}(m_h^2) + \Pi_{hH}^{1\text{PI}}(m_H^2)\}/(m_H^2 - m_h^2)$ $\partial_{\xi} \Pi_{Hh} \neq 0 \quad \text{at } p^2 = m_H^2 = m_h^2 \qquad \Longrightarrow \qquad \text{Gauge dependence for } \delta \alpha$

• Though this , the decay amplitudes are also gauge-dependent.

$$\frac{\partial \mathcal{M}_{A \to Zh}}{\partial \xi} = \frac{\partial}{\partial \xi} \left(\mathcal{M}_{A \to Zh}^{\text{tree}} + \mathcal{M}_{A \to Zh}^{1\text{PI}} + \delta \mathcal{M}_{A \to Zh} \right) \\ = \frac{\partial}{\partial \xi} \left(\mathcal{M}_{A \to Zh}^{1\text{PI}} + f(\delta Z_i) + g(\delta \alpha, \delta \beta) + h(\delta m_i) \right) = \frac{\partial}{\partial \xi} g(\delta \alpha, \delta \beta) \neq 0 \\ = 0$$

Gauge independent renormalization of mixing angles

• In order to remove the gauge dependence in $\delta lpha, \, \delta eta$, we utilize pinch technique.

Basic idea:
$$\Pi_{Hh} \rightarrow \Pi_{Hh} + \Pi_{Hh}^{\text{Pinch}} \leftarrow \top = \left| \begin{array}{c} & & \\ & & \\ & \\ \end{array} \right| + \left| \begin{array}{c} & & \\ & \\ & \\ \end{array} \right| + \left| \begin{array}{c} & & \\ & \\ & \\ \end{array} \right|$$

This should arise from the full NLO amp.
e.g., $gg \rightarrow A/H \rightarrow \bar{f}f$
 $\mathcal{M}_{gg \rightarrow h/H \rightarrow \bar{f}f}^{\text{NLO}} \in \mathcal{M}_{gg \rightarrow h/H \rightarrow \bar{f}f}^{\text{SE-like}}$

- Another scheme for mixing angles in gauge invariant way
 - p* scheme : $\hat{\Pi}_{Hh} (p^2 = [m_H^2 + m_h^2]/2) = 0$ [Espinosa, Yamada, PRD67(2003) 036003]
 - On-shell conditions with S matrix (THDM+ ν_{Ri} (i=1,2), $y_{\nu i} \rightarrow 0$) [Denner, Dittmaier, Lang, JHEP 1811(2018)104]

$$\frac{\mathscr{M}_{H\to\nu_{R1}\nu_{R1}}^{\text{loop}}}{\mathscr{M}_{h\to\nu_{R1}\nu_{R1}}^{\text{loop}}} = \frac{\mathscr{M}_{H\to\nu_{R1}\nu_{R1}}^{\text{tree}}}{\mathscr{M}_{h\to\nu_{R1}\nu_{R1}}^{\text{tree}}} = \frac{c_{\alpha}}{s_{\alpha}} \qquad \qquad h(H) \quad -- \bigvee_{\nu_{Ri}}^{\nu_{Ri}} = y_{\nu_{i}}c_{\alpha}(s_{\alpha})$$

Scheme difference in counterterms of mixing angles

[A. Denner, S. Dittmaier, J.N. Lang, 1808.03466]

BP: A1
$$M_{H_2} = 125 \text{GeV}, \ M_{H_1} = 300 \text{GeV}, \ M_{A,H^+} = 460 \text{GeV},$$

 $\lambda_5 = -1.9, \ t_\beta = 2, \ c_{\beta-\alpha} = 0.1$, $\mu_0 = (m_{H_2} + m_{H_1} + M_A + 2M_{H^\pm})/5$

	A1						
Scheme	LO	NLO					
$\overline{\mathrm{MS}}(\mathrm{PRTS})$	$147.102(4)^{>+100\%}_{-47.8\%}$	$104.86(2)^{<-100\%}_{-24.1\%}$					
$\overline{\mathrm{MS}}(\mathrm{FJTS})$	$64.096(2)^{-86.9\%}_{>+100\%}$	$92.17(1)^{-81.4\%}_{+5.6\%}$					
OS1	80.992(2)	$97.145(7)^{-5.2\%}_{+5.1\%}$					
OS2	71.429(2)	$96.95(1)^{+0.1\%}_{-0.2\%}$					
OS12	78.304(2)	$98.812(8)^{+0.8\%}_{+0.7\%}$					
BFMS	94.265(2)	$100.117(5)^{-2.2\%}_{+1.6\%}$					

OS1,2,12: On shell with $H, h \rightarrow \nu_{Ri} \bar{\nu}_{Ri}$ BFMS: On-shell with $\hat{\Pi}_{Hh}$ and the PT

Theoretical uncertainty (scheme difference) for on-shell scheme is a few %.

Other plots

[1710.07621]

	ILC250		+ILC500	
	κ fit	EFT fit	κ fit	EFT fit
g(hbb)	1.8	1.1	0.60	0.58
g(hcc)	2.4	1.9	1.2	1.2
g(hgg)	2.2	1.7	0.97	0.95
g(hWW)	1.8	0.67	0.40	0.34
g(h au au)	1.9	1.2	0.80	0.74
g(hZZ)	0.38	0.68	0.30	0.35
$g(h\gamma\gamma)$	1.1	1.2	1.0	1.0
$g(h\mu\mu)$	5.6	5.6	5.1	5.1
$g(h\gamma Z)$	16	6.6	16	2.6
g(hbb)/g(hWW)	0.88	0.86	0.47	0.46
g(h au au)/g(hWW)	1.0	1.0	0.65	0.65
g(hWW)/g(hZZ)	1.7	0.07	0.26	0.05
Γ_h	3.9	2.5	1.7	1.6
$BR(h \rightarrow inv)$	0.32	0.32	0.29	0.29
$BR(h \rightarrow other)$	1.6	1.6	1.3	1.2

			ATLA	AS										
3000 fb^{-1} relative uncertainty [%]				CMS										
		Total	Stat	Exp	SigTh	BkgTh			3000	$fb^{-1}r$	elative	uncertain	ty [%]	
$\mathbf{B}^{\gamma\gamma}$	S 1	6.0	1.2	4.7	3.3	1.4			Total	Stat	Exp	SigTh	BkgTh	
Ъ	S 2	3.7	1.2	2.9	1.8	0.6	$\mathbf{D}\gamma\gamma$	S 1	4.4	1.3	2.6	3.3	0.3	[1902.00134]
DWW	S 1	5.8	1.0	2.8	4.3	2.6	D	S 2	3.0	1.3	1.7	1.9	0.3	[::::::::::::::::::::::::::::::::::::::
в	S 2	<mark>4.4</mark>	1.0	2.4	3.2	1.6	DWW	S 1	4.0	1.0	1.4	3.5	1.0	
DZZ	S 1	5.3	1.6	3.0	3.7	1.7	D	S 2	<mark>2.8</mark>	1.0	1.1	2.2	0.9	
Б	S 2	3.8	1.6	2.7	1.9	1.0	DZZ	S 1	5.0	1.6	2.5	3.5	1.9	
\mathbf{D}^{pp}	S 1	7.6	2.0	2.4	5.0	4.7	D	S 2	3.2	1.6	1.7	2.1	0.7	
Б	S 2	5.0	2.0	1.9	2.8	3.2	pbb	S 1	7.0	2.1	2.3	5.2	3.6	
$\mathbf{B}^{ au au}$	S 1	6.0	1.7	2.7	4.4	2.4	D	S 2	<mark>4.7</mark>	2.1	1.7	2.4	2.9	
Ъ	S 2	<mark>4.4</mark>	1.7	2.5	2.8	1.7	$\mathbf{B}^{ au au}$	S 1	3.9	1.6	1.9	2.6	1.5	
$\mathbf{B}^{\mu\mu}$	S 1	14.9	12.7	3.2	6.8	0.3	Б	S 2	<mark>2.9</mark>	1.6	1.4	1.9	0.6	
Ъ	S 2	13.7	12.7	3.2	3.7	0.3	$\mathbf{P}^{\mu\mu}$	S 1	12.8	9.1	7.6	4.7	0.8	
$\mathbf{p}^{\mathbf{Z}\gamma}$	S 1	24.2	20.3	4.5	12.2	0.0	Б	S 2	9.6	9.1	1.7	2.6	0.8	
D	S 2	24.2	20.3	4.5	12.2	0.0								

-80% $e^-,+30\%e^+$	polarization: ILC 250 fb^{-1}					
	$250 {\rm GeV}$		$350 { m GeV}$		$500 { m GeV}$	
	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$	Zh	$ u\overline{ u}h$
σ [50–53]	2.0		1.8		4.2	
$h \rightarrow invis.$ [54, 55]	0.86		1.4		3.4	
$h o b \overline{b} [56 - 59]$	<mark>1.3</mark>	8.1	1.5	1.8	2.5	0.93
$h ightarrow c\overline{c} \; [56, 57]$	8.3		11	19	18	8.8
$h ightarrow gg \ [56, 57]$	7.0		8.4	7.7	15	5.8
$h \rightarrow WW$ [59–61]	<mark>4.6</mark>		5.6 *	5.7 *	7.7	3.4
$h \rightarrow \tau \tau$ [63]	<mark>3.2</mark>		4.0 *	16 *	6.1	9.8
$h \to ZZ$ [2]	18		25 *	20 *	35 *	12 *
$h o \gamma \gamma$ [64]	34 *		39 *	45 *	47	27
$h ightarrow \mu \mu \ [65, 66]$	72 *		87 *	160 *	120 *	100 *
a [27]	7.6		2.7 *		4.0	
b	2.7		0.69 *		0.70	
ho(a,b)	-99.17		-95.6 *		-84.8	
$+80\%~e^-,-30\%~e^+$	polarization:					

[1708.08912]