Constraining neutrino models predictions

Szymon Zięba

University of Silesia in Katowice

Based on arXiv:2310.20681, submitted to PPNP

Phenomenology of Lepton Masses and Mixing with Discrete Flavor Symmetries

authors: Garv Chauhan, P. S. Bhupal Dev, levgen Dubovyk, Bartosz Dziewit, Wojciech Flieger, Krzysztof Grzanka, Janusz Gluza, Biswajit Karmakar, Szymon Zięba

XXX Cracow EPIPHANY Conference on Precision Physics at High Energy Colliders, Kraków, January 11, 2024

Neutrino mixing, 3ν .

Neutrino flavor and mass eigenstates are related by

$$|\nu_{\alpha}\rangle = \mathrm{U}_{\alpha i} |\nu_{i}\rangle$$

Pontecorvo-Maki-Nakagawa-Sakata parametrization of mixing matrix

Szymon Zięba (UŚ)

$$\begin{array}{ll} \hline \text{Normal mass ordering (NO)} \\ \hline m_1 = m_0, \\ m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}, \\ m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}, \end{array} & \begin{array}{l} \text{Inverted mass ordering (IO)} \\ \hline m_1 = \sqrt{m_0^2 - \Delta m_{21}^2} - \Delta m_{32}^2, \\ m_2 = \sqrt{m_0^2 - \Delta m_{32}^2}, \\ m_3 = m_0, \end{array} \\ \end{array}$$

Taken from https://globalfit.astroparticles.es, updated arXiv:1806.11051, Figure 1

Szymon Zięba (UŚ)

Oscillation data, with SK.

Parameter	Ordering	NuFIT 5.2 (2022)		de Salas et al. (2021)		Capozzi et al. (2021)	
		$bf \pm 1\sigma$	3σ range	$bf \pm 1\sigma$	3σ range	$bf \pm 1\sigma$	3σ range
$\sin^2 \theta_{12} / 10^{-1}$	NO, IO	$3.03^{+0.12}_{-0.12}$	2.70 - 3.41	$3.18^{+0.16}_{-0.16}$	2.71 - 3.69	$3.03^{+0.13}_{-0.13}$	2.63 - 3.45
$\sin^2 \theta_{23}/10^{-1}$	NO	$4.51^{+0.19}_{-0.16}$	4.08 - 6.03	$5.74^{+0.14}_{-0.14}$	4.34 - 6.10	$4.55^{+0.18}_{-0.15}$	4.16 - 5.99
θ_{23} octant	IO	$5.69^{+0.16}_{-0.21}$	4.12 - 6.13	$5.78^{+0.10}_{-0.17}$	4.33 - 6.08	$5.69^{+0.12}_{-0.21}$	4.17 - 6.06
$\sin^2 \theta_{13} / 10^{-2}$	NO	$2.225^{+0.056}_{-0.059}$	2.052 - 2.398	$2.200^{+0.069}_{-0.062}$	2.000 - 2.405	$2.23^{+0.07}_{-0.05}$	2.04 - 2.44
≠ 0	IO	2.223 ^{+0.058} -0.058	2.048 - 2.416	$2.225^{+0.064}_{-0.070}$	2.018 - 2.424	$2.23^{+0.06}_{-0.06}$	2.03 - 2.45
δ_{CP}/π	NÖ	$1.29^{+0.20}_{-0.14}$	0.80 - 1.94	$1.08^{+0.13}_{-0.12}$	0.71 - 1.99	$1.24^{+0.18}_{-0.13}$	0.77 - 1.97
can be 0?	IO	$1.53^{+0.12}_{-0.16}$	1.08 - 1.91	$1.58^{+0.15}_{-0.16}$	1.11 - 1.96	$1.52^{+0.15}_{-0.11}$	1.07 - 1.90
$\Delta m_{21}^2 / 10^{-5} \text{eV}^2$	NO, IO	$7.41^{+0.21}_{-0.20}$	6.82 - 8.03	7.50 ^{+0.22} -0.20	6.94 - 8.14	$7.36^{+0.16}_{-0.15}$	6.93 - 7.93
Δm_{atm}^2 /10 ⁻³ eV ²	NO	2.507+0.026	2.427 - 2.590	$2.55^{+0.02}_{-0.03}$	2.47 - 2.63	2.485 ^{+0.023} -0.031	2.401 - 2.565
	IO	2.486 ^{+0.028} -0.025	2.406 - 2.570	$2.45^{+0.02}_{-0.03}$	2.37 - 2.53	2.455 ^{+0.030} -0.025	2.376 - 2.541
$\Delta \chi^2$	10 - NO	6.4		6.4		6.5	

Figure taken form Biswajit Karmakar talk, link here. See also arXiv:2012.12893, Figure 1 and arXiv:2204.08668, Figure 2.1

Figure taken form Peter B. Denton talk, link here.

BM, TB, GR, HG, $\theta_{13} = 0$ (early 2010s).

$$U_{\rm PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{33} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix}$$
$$\theta_{13} = 0^{\circ} \qquad \Downarrow \qquad \theta_{23} = 45^{\circ}$$
$$U_{0} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

∜

Golden Ratio Mixing: tg $\theta_{12}=1/\varphi$, $~\varphi=(1+\sqrt{5})/2$ being the golden ratio.

Based on Biswajit Karmakar talk, link here.

$\theta_{13} \neq 0$, Daya Bay, RENO (2012).

BM, TB, GR, HG disfavored by non-zero θ_{13} .

Szymon Zięba (UŚ)

Non-zero θ_{13} : Successors of tribimaximal mixing, TM_1 , TM_2 .

$$\begin{split} \mathbf{U}_{\mathrm{TBM}} &= \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{U}_{\mathrm{PMNS}} \simeq \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0.15\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix} \\ \mathbf{U}_{\mathrm{TM}_1} &= \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{c_\theta}{\sqrt{3}} & \frac{c_\theta}{\sqrt{3}} & \frac{s_\theta}{\sqrt{2}} e^{-i\gamma} \\ -\frac{1}{\sqrt{6}} & \frac{c_\theta}{\sqrt{3}} & -\frac{s_\theta}{\sqrt{2}} e^{i\gamma} & -\frac{s_\theta}{\sqrt{3}} e^{-i\gamma} \\ -\frac{1}{\sqrt{6}} & \frac{c_\theta}{\sqrt{3}} & -\frac{s_\theta}{\sqrt{2}} e^{i\gamma} & -\frac{s_\theta}{\sqrt{3}} e^{-i\gamma} \\ -\frac{1}{\sqrt{6}} & \frac{c_\theta}{\sqrt{3}} & -\frac{s_\theta}{\sqrt{2}} e^{-i\gamma} & -\frac{c_\theta}{\sqrt{2}} \\ \end{bmatrix}, \\ \mathbf{U}_{\mathrm{TM}_2} &= \begin{bmatrix} -\frac{c_\theta}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2s_\theta}{\sqrt{2}} e^{-i\gamma} & -\frac{c_\theta}{\sqrt{2}} \\ -\frac{c_\theta}{\sqrt{6}} & +\frac{s_\sqrt{2}}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{s_\theta}{\sqrt{3}} e^{-i\gamma} & -\frac{c_\theta}{\sqrt{2}} \\ -\frac{c_\theta}{\sqrt{6}} & +\frac{s_\sqrt{2}}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{s_\theta}{\sqrt{3}} e^{-i\gamma} & -\frac{c_\theta}{\sqrt{2}} \\ \end{bmatrix}, \\ |\mathbf{U}_{\mathrm{TM}_1}| &= \begin{bmatrix} \frac{2}{\sqrt{6}} & * & * \\ \frac{1}{\sqrt{6}} & * & * \\ \frac{1}{\sqrt{6}} & * & * \\ \frac{1}{\sqrt{6}} & * & * \end{bmatrix}, \qquad |\mathbf{U}_{\mathrm{TM}_2}| = \begin{bmatrix} * & \frac{1}{\sqrt{3}} & * \\ * & \frac{1}{\sqrt{3}} & * \\ * & \frac{1}{\sqrt{3}} & * \\ & & \frac{1}{\sqrt{3}} & * \\ \end{bmatrix}. \end{split}$$

Based on Biswajit Karmakar talk, link here.

TM_1 oscillation parameters predictions.

$$\mathbf{U}_{\rm PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{53} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix},$$

$$\mathbf{U}_{\mathrm{TM}_{1}} = \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} & \frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} \\ -\frac{1}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} - \frac{s_{\theta}}{\sqrt{2}} e^{i\gamma} & -\frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} - \frac{c_{\theta}}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} - \frac{s_{\phi}}{\sqrt{2}} e^{i\gamma} & -\frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} + \frac{c_{\theta}}{\sqrt{2}} \end{bmatrix}.$$

Comparing the corresponding elements of the first column of $\rm U_{PMNS}$ and $\rm U_{TM_{1}}.$

$$\begin{split} |\mathbf{U}_{e1}|^2 &= c_{12}^2 c_{13}^2 = 2/3 \quad : \quad s_{12}^2 = \frac{1 - 3s_{13}^2}{3 - 3s_{13}^2}, \\ |\mathbf{U}_{\mu 1}|^2 &= |\mathbf{U}_{\tau 1}|^2 = 1/6 \quad : \quad \cos \delta_{\mathrm{CP}} = \frac{(1 - 5s_{13}^2)(2s_{23}^2 - 1)}{4s_{13}s_{23}\sqrt{2(1 - 3s_{13}^2)(1 - s_{23}^2)}}. \end{split}$$

Based on arXiv:1212.3247

TM_2 oscillation parameters predictions.

$$U_{\rm PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{s3} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix},$$
$$U_{\rm TM_2} = \begin{bmatrix} \frac{2c_{\theta}}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{2s_{\theta}}{\sqrt{6}}e^{-i\gamma} \\ -\frac{c_{\theta}}{\sqrt{6}} + \frac{s}{\sqrt{2}}e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{s_{\theta}}{\sqrt{3}}e^{-i\gamma} - \frac{c_{\theta}}{\sqrt{2}} \\ -\frac{c_{\theta}}{\sqrt{6}} + \frac{s}{\sqrt{2}}e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{s_{\theta}}{\sqrt{3}}e^{-i\gamma} + \frac{c_{\theta}}{\sqrt{2}} \end{bmatrix}.$$

Comparing the corresponding elements of the second column of U_{PMNS} and U_{TM_2} .

$$\begin{split} |\mathbf{U}_{e2}|^2 &= \mathbf{s}_{12}^2 \mathbf{c}_{13}^2 = 1/3 \quad : \quad \mathbf{s}_{12}^2 = \frac{1}{3 - 3\mathbf{s}_{13}^2}, \\ |\mathbf{U}_{\mu 2}|^2 &= |\mathbf{U}_{\tau 2}|^2 = 1/3 \quad : \quad \cos \delta_{\mathrm{CP}} = -\frac{(2 - 4\mathbf{s}_{13}^2)(2\mathbf{s}_{23}^2 - 1)}{4\mathbf{s}_{13}\mathbf{s}_{23}\sqrt{(2 - 3\mathbf{s}_{13}^2)(1 - \mathbf{s}_{23}^2)}}. \end{split}$$

TM_1 and TM_2 , δ_{CP} vs. $\sin^2 \theta_{23}$.

Szymon Zięba (UŚ)

g neutrino models predictions

\overline{TM}_1 and \overline{TM}_2 , $\sin^2 \theta_{12}$ vs. $\sin^2 \theta_{13}$.

$$\mathrm{TM}_1: \quad \mathrm{s}_{12}^2 = \frac{1 - 3 \mathrm{s}_{13}^2}{3 - 3 \mathrm{s}_{13}^2}, \quad \mathrm{TM}_2: \quad \mathrm{s}_{12}^2 = \frac{1}{3 - 3 \mathrm{s}_{13}^2}$$

NuFIT 5.2 (2022).

NuFIT 5.2 (2022)

Taken from http://www.nu-fit.org, updated arXiv:2007.14792, Table 3.

TM_1 and TM_2 , δ_{CP} vs. $\sin^2 \theta_{23}$, constrained, 3σ .

Darker shaded regions = constrained with correlations.

TM_1 and TM_2 , δ_{CP} vs. $\sin^2 \theta_{23}$, constrained, 2σ .

Darker shaded regions = constrained with correlations.

TM_1 and TM_2 , δ_{CP} vs. $\sin^2 \theta_{13}$, constrained, 3σ .

$$\mathrm{TM}_{1}: \quad \cos \delta_{\mathrm{CP}} = \frac{(1 - 5 s_{13}^{-})(2 s_{23}^{-} - 1)}{4 s_{13} s_{23} \sqrt{2(1 - 3 s_{13}^{-})(1 - s_{23}^{-})}}, \quad \mathrm{TM}_{2}: \quad \cos \delta_{\mathrm{CP}} = -\frac{(2 - 4 s_{13}^{-})(2 s_{23}^{-} - 1)}{4 s_{13} s_{23} \sqrt{(2 - 3 s_{13}^{-})(1 - s_{23}^{-})}}.$$

Darker shaded regions = constrained with correlations.

TM_1 and TM_2 , δ_{CP} vs. $\sin^2 \theta_{13}$, constrained, 2σ .

$$\mathrm{TM}_{1}: \quad \cos \delta_{\mathrm{CP}} = \frac{(1 - 5 \mathrm{s}_{13}^{2})(2 \mathrm{s}_{23}^{2} - 1)}{4 \mathrm{s}_{13} \mathrm{s}_{23} \sqrt{2(1 - 3 \mathrm{s}_{13}^{2})(1 - \mathrm{s}_{23}^{2})}, \quad \mathrm{TM}_{2}: \quad \cos \delta_{\mathrm{CP}} = -\frac{(2 - 4 \mathrm{s}_{13}^{2})(2 \mathrm{s}_{23}^{2} - 1)}{4 \mathrm{s}_{13} \mathrm{s}_{23} \sqrt{(2 - 3 \mathrm{s}_{13}^{2})(1 - \mathrm{s}_{23}^{2})}.$$

Darker shaded regions = constrained with correlations.

Improvements in precise determination neutrino oscillation parameters triggered construction and tests of discrete symmetry neutrino flavor models.

- disfavored by oscillation parameters (history)
 - Bimaximal, Tribimaximal, Golden Ratio, Hexagonal Mixings disfavored by non-zero θ_{13} ;
- Successors of Tribimaximal Mixings (current work)
 - TM_1 and TM_2 predictions are significantly constrained by oscillation parameters correlations;
 - TM_2 is not applicable at 2σ or less;
- conclusion
 - taking into account correlations between oscillation parameters is a significant step forward in testing and constraining the predictions of discrete symmetry neutrino flavor models;

Thank you for your attention.

Neutrino oscillation parameters data files.

Valencia neutrino global fit, link here.

Szymon Zięba (UŚ)