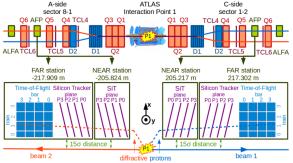


Alignment of the ATLAS-AFP detectors


Ferhat Öztürk on behalf of ATLAS Forward Detectors

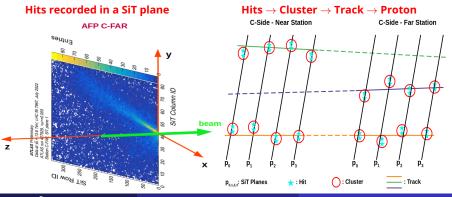
Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) ferhat.ozturk@cern.ch

> XXX. Cracow Epiphany Conference 8-12 January 2024

ATLAS Forward Proton Detector

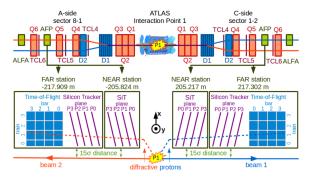
The ATLAS Forward Proton (AFP) project aims to extend the physics reach of ATLAS towards processes in which one or both protons remain intact by detecting those very forward protons.

AFP detector system:


- Roman Pots (RP) are located at 205m and 217m from the interaction point (IP) on both sides.
- NEAR stations are equipped with Silicon Tracker (SiT) detectors only.
- FAR stations have SiT and Time of Flight (ToF) detectors.

AFP Reconstruction

Silicon Tracker (SiT) planes


- 3D silicon pixel sensors (336 × 80 pixels)
- Pixel size: 50 μm × 250 μm
- Plane thickness: 230 µm
- The planes are tilted at a 14° about the y-axis
- Resolution: $\sigma_x = 6 \,\mu m$ and $\sigma_y = 30 \,\mu m$

Ferhat Öztürk (IFJ PAN)

AFP Alignment

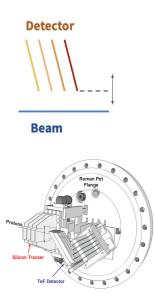
Misalignment of the AFP detectors biases the reconstruction of the proton kinematics, which impacts the measurements.

Inter-plane alignment

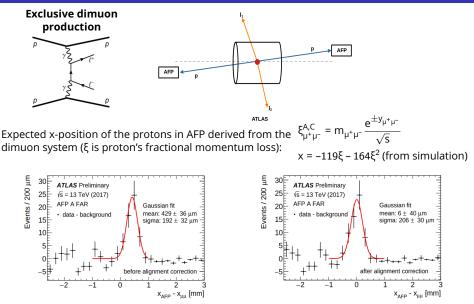
The relative position of each plane within a stationx".

Global alignment

Determining the position of each station in relation to the beam position.


Relative alignment

The alignment between the NEAR and FAR Stations.

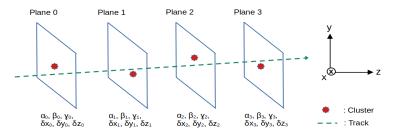

Ferhat Öztürk (IFJ PAN)

Global Alignment

- Beam-Based Alignment (BBA): Determining the nominal beam positions by moving collimators toward the beam.
- Beam Position Monitoring (BPM): Monitoring the real-time position of a particle beam during normal accelerator operation.
- RP Rotations: Detecting the rotation of the pot during insertion through the use of SICK Laser measurements.
- **Exclusive Dimuon Production:** Comparing the x-positions of protons calculated by dimuon and AFP systems in the $pp \rightarrow p(\gamma\gamma \rightarrow \mu\mu)p$ process.

Global Alignment

In Run 2, a systematic uncertainty from Global Alignment is \pm 300 μ m (dominant one).


Ferhat Öztürk (IFJ PAN)

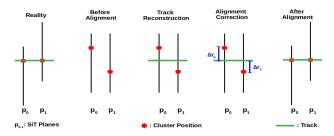
Alignment of the ATLAS-AFP detectors

6/17

Interplane Alignment

The inter-plane alignment aims to provide an accurate description of each plane's relative position in the station.

- The tracks can serve as an approximate method of aligning SiT planes (Track based alignment).
- A total of 24 free parameters must be determined in a station for interplane alignment.
- Residuals Minimization: Minimizing the difference between cluster and track positions by studying the distributions.
- Global χ² Minimization: Minimizing the residuals using Global χ² method (Ongoing).



11 January 2024

Ferhat Öztürk (IFJ PAN)

Interplane Alignment: Residuals Minimization

The method based on reducing the differences between cluster and track positions, known as residuals ($\Delta \vec{r}$), in each plane.

Residuals calculation:

 $\vec{r}_{t} = R(\alpha, \beta, \gamma) \cdot \vec{r}_{c}(x, y, z) + \delta \vec{r}(\delta x, \delta y, \delta z)$ $\vec{r}_{t} - \vec{r}_{c} = \Delta \vec{r} = (\Delta x, \Delta y, \Delta z)$

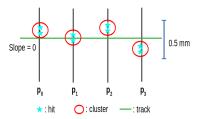
- r_t, r_c : Track and cluster positions
- α , β , γ : rotation about z, y, x axis
- $\delta x,\,\delta y,\,\delta z$: offset values

Small angle approximation!

Ferhat Öztürk (IFJ PAN)

Analysis Parameters:

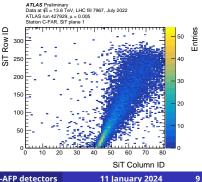
- Only 3 parameters per plane: (δx, δy, α)
- 9 parameters per station by fixing the first plane: $(\delta x_0 = 0, \delta y_0 = 0, \alpha_0 = 0)$


Analysis Algorithm:

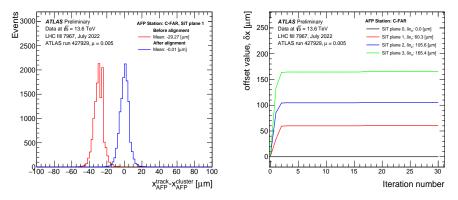
- Initial alignment parameters
- Event reconstruction
- Event cleaning
- Iteration (30 times)

Interplane Alignment: Event Selection

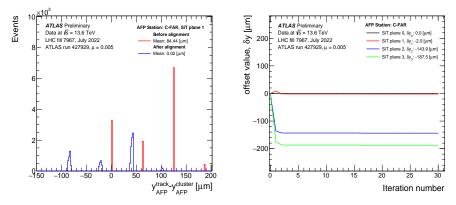
Event reconstruction and cleaning:


- 1 track reconstructed per station
- 1 cluster reconstructed per plane
- 1 or 2 hits recorded per plane
- Transverse dist between clusters < 0.5 mm</p>
- Slope of the tracks are neglected

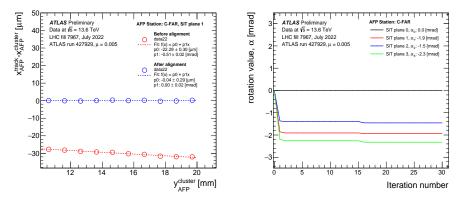
Before Event Cleaning


ATLAS Preliminary Data at vs = 13.6 TeV. LHC fill 7967. July 2022 ATLAS run 427929. u = 0.005 C-FAR, SiT plane 1 Entries SIT Row ID 300 250 60 200 50 150 <u>4</u>0 30 100 20 50 10 ٥ n 10 40 60 80 SiT Column ID

After Event Cleaning


Ferhat Öztürk (IFJ PAN)

Results: Offset value δx


- δx is obtained from the mean value of the differences between the reconstructed tracks and the clusters.
- Example: Plane 1 is misaligned by 60.3 μm in the x-axis with respect to Plane 0.

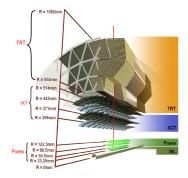
Results: Offset Value δy

- δy is obtained from the mean value of the differences between the reconstructed tracks and the clusters.
- The multi-peak structure in the distribution is a result of low and non-Gaussian resolution in the SiT plane along the y-axis (long-pixel direction).
- The fact that red values are "exact" while blue values are a bit "smeared" is due to plane rotation considered in the alignment procedure.

Results: Rotation Angle α

- The rotation angle about the z-axis (α) can be obtained from difference between x-position of reconstructed track and cluster plotted in a function of y-position of a cluster: $\alpha = \frac{\partial \Delta x}{\partial y}$.
- α is extracted from a linear fit applied to the data points.

Future Developments: Global χ^2 Minimization

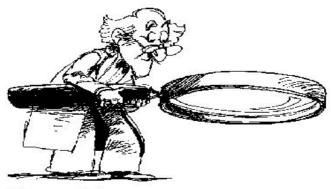

Global χ^2 :

$$\begin{split} \chi^2(\alpha,\tau)_g &= \sum_{i=tracks} \chi^2_i(\alpha,\tau) \\ &= \sum_{i=tracks} r^T_i(\alpha,\tau) V^{-1} r^T_i(\alpha,\tau) \end{split}$$

Solution (Newton Raphson Method):

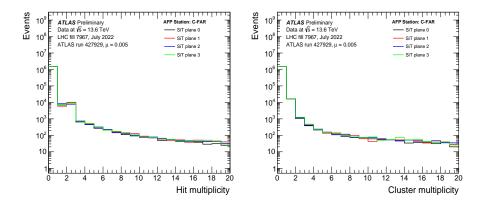
$$\alpha_1 = \alpha_0 - \left(\left. \frac{d^2 \chi_g^2(\alpha,\tau)}{d\alpha^2} \right|_{\alpha = \alpha_0} \right)^{-1} \left(\left. \frac{d \chi_g^2(\alpha,\tau)}{d\alpha} \right|_{\alpha = \alpha_0} \right)$$

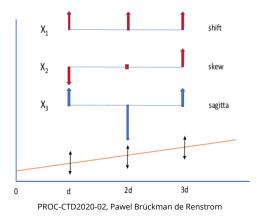
- Finding a solution within a few iterations.
- Working with a large number of degrees of freedom.
- Identifying and eliminating weak modes.
- Allowing the application of constraints from the detector's geometry and measurements.



Summary

- The AFP detector plays a crucial role in expanding the ATLAS physics program by detecting protons that remain intact after pp collisions.
- The alignment procedure involves two main steps:
 - Global alignment based on Beam-Based Alignment, exclusive dileptons, Roman Pot rotations, LHC survey data:
 - the use of Beam Position Monitors under investigation,
 - "true LHC beam optics" being studied,
 - Run 2 systematic uncertainty: 300 μm (will be reduced for Run 3).
 - **2** Local Alignment based on minimization of residuals and Global χ^2 .
- All studies are ongoing for Run3 data.


Thank You


Hard To Find Treasures

The search is on

Hit and Cluster Distributions

- Weak modes due to poorly constrained alignment parameters.
- Global detector movements that leave a track's χ^2 unchanged.