## KRAKOW SCHOOL OF INTERDYSCIPLINARY PHD STUDIES

## Markov Chain Monte Carlo Methods: An Alternative Approach for Nuclear PDF Determination

Nasim Derakhshanian

**Dr. Aleksander Kusina** 

IFJ PAN

**Department of Theoretical Particle Physics** 



XXX Cracow EPIPHANY Conference

on Precision Physics at High Energy Colliders dedicated to the memory of Staszek Jadach

8-12 January 2024





### **Parton Distribution Function (PDF):**

The probability  $f_{a/p}(x,\mu)$  that a parton **a** carries fraction **x** of the proton's momentum

μ: Factorization scale x: momentum fraction



### **Parton Distribution Function (PDF):**

The probability  $f_{a/p}(x,\mu)$  that a parton **a** carries fraction **x** of the proton's momentum

μ: Factorization scale x: momentum fraction

**Factorization Theorem:** 

$$\sigma_{P_{Y} \to c} = f_{P \to a} \otimes \hat{\sigma}_{a_{Y} \to c}$$

Parton densities (long-distance)

Parton interaction (short-distance)



### **Parton Distribution Function (PDF):**

The probability  $f_{a/p}(x,\mu)$  that a parton **a** carries fraction **x** of the proton's momentum

μ: Factorization scale x: momentum fraction

**Factorization Theorem:** 

$$\sigma_{P_{\mathcal{Y}\to c}} = f_{P\to a} \otimes \hat{\sigma}_{a_{\mathcal{Y}\to c}}$$

Parton densities Parton densities (long-distance) (

Parton interaction (short-distance)

- Universal (independent of the process)
- Constrained through momentum and number sum rules

**PDF properties:** 

- $\mu^2$ -dependence governed by DGLAP evolution equations
- Non-perturbative: x-dependence of PDF is NOT calculable in pQCD

extracting from a fit to experimental data



Nuclear Parton Distribution Function (nPDF)

# **XS)** Nuclear PDFs(nPDFs):

#### **Motivations:**

- ' Interpreting heavy-ion collision data
- Understanding Nuclear Structure

The accuracy of PDF(nPDF) determination plays an important role in high-energy physics







### **nCTEQ15** framework for nuclear PDF:

Kovarik et al., arXiv:1509.00792

Functional form for bound proton at Q<sub>0</sub>:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

 $i = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}$ 

Atomic number dependence is characterized in the  $c_k$  coefficients as

$$c_k \to c_k(A) \equiv p_k + a_k(1 - A^{-b_k}), \qquad k = \{1, ..., 5\}.$$

PDF of a nucleus (A – mass, Z – charge):

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

#### **Nuclear Parton Distribution Function (nPDF)**

### **PDF uncertainties estimation:**

Hessian method: Common method for estimating uncertainties in PDFs.

relying on the Gaussian approximation of  $\Delta\chi^2$ 



#### **Shortcomings:**

- Non-gaussian errors
- Global minima judgment
- Choice of  $\Delta \chi^2$

### **PDF uncertainties estimation:**

Hessian method: Common method for estimating uncertainties in PDFs.

relying on the Gaussian approximation of  $\Delta \chi^2$ 



#### **Shortcomings:**

- Non-gaussian errors
- Global minima judgment
- Choice of  $\Delta \chi^2$

nPDF difficulties

### **PDF uncertainties estimation:**

**Hessian method:** Common method for estimating uncertainties in PDFs.

relying on the Gaussian approximation of  $\Delta \chi^2$ 

#### **Shortcomings:**

- Non-gaussian errors
- Global minima judgment
- Choice of  $\Delta \chi^2$

nPDF difficulties

#### Markov Chain Monte Carlo method

advanced statistical method as an alternative for Hessian





# Image: Markov Chain Monte Carlo (MCMC)

A sequence of random variables where the current value is dependent on the value of the prior variable (Memory-less property)

A technique for randomly sampling a probability distribution and approximating a desired quantity.



Prior: initial belief about the parameter before considering the data. Likelihood: probability of observing the data given a specific value of the parameter. Posterior: updated belief about the parameter given the data.

#### **MCMC method**

We aim to find the set of nPDF parameters that maximizes the posterior probability distribution given the experimental data.



### Metropolis algorithm:

- Initialize parameters
- for i=1 to i=N:

Propose a new sample

 $\bigcirc$ 

Initial sample ( $\theta^{(0)}$ )

accepted

rejected

Prior distribution  $p(\theta)$ 

Generate proposed parameters via proposition function:  $\theta$  \* ~ q( $\theta$  \* |  $\theta$  i )

Sample from uniform distribution:  $u \sim U(0,1)$ 

```
Compute acceptance ratio: \alpha = p(\theta * | D) / p(\theta i | D)
```

```
If u < min(1, \alpha) then x_{i+1} = x^*
```

Judgment of proposed sample

• Else 
$$\mathbf{x}_{i+1} = \mathbf{x}$$
 i  
Metropolis-Hasting:  $x_{t+1} = \mathcal{N}(x_t, C_0)$   
Adaptive Metropolis-Hasting:  $x_{t+1} = \beta \mathcal{N}(x_t, C_0) + (1 - \beta) \mathcal{N}(x_t, \hat{C}_n)$ 

lθ

 $\theta_{max}$ 

 $\theta_{min}$ 

#### **MCMC method**

θ

Posterior

distribution  $p(\theta|v)$ 

# **VSOPDFGlobal** analysis:



#### **MCMC** method

# 



#### **MCMC** method

# Parametrization: $xf_i^{p/A}(x, Q_0) = c_0 x^{c_1}(1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$ $c_k \to c_k(A) \equiv p_k + a_k (1-A^{-b_k}),$

### **Generating the Markov Chain of nPDF parameters:**

Each point of the chain is representing a set of nPDF parameters (parameter  $a_k$  for 6 valances, 2 sea quarks and 2 gluon)

DIS and W/Z boson data: 436 data points

| $a_1^{u_v}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing<br>- 0.00               |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $a_2^{u_v}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.05<br>-0.10<br>-0.15     |
| $a_3^{u_v}$             | and a second design of the second of the sec | - 2.5<br>- 2.0<br>- 1.5     |
| $a_1^{d_v}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.00<br>0.05              |
| $a_2^{d_v}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.25<br>- 0.00<br>- —0.25 |
| $a_3^{d_v}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                         |
| $a_1^{ar u+ar d}$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.05                      |
| $a_2^{\bar{u}+\bar{d}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1<br>- 0                  |
| $a_1^g$                 | Will we have determined by the second back of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.1<br>- 0.0              |
| $a_2^g$                 | acc rate:0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 2<br>- 1                  |
|                         | o 25000 50000 75000 100000 125000 150000 175000<br>proposed states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |

#### MCMC can reveal non-Gaussian features of the underlying distribution

### Pairwise plot

 $\mathbf{X}$ 

diagonal: histogram of each parameter off-diagonal: 2D correlation plots between parameters



#### **Preliminary results**

### Preliminary results

### **Error estimation:**

 $\langle S \rangle$ 

Monte Carlo error estimation (uncorrelated)

$$\sigma_{MC}^2 = \frac{1}{n-1} \sum_{t=1}^{n} (X_t - \hat{\mu})^2$$

Autocorrelation function (ACF)

Autocorrelation time

 $\rho(k) = \frac{\operatorname{Cov}(k)}{\operatorname{Cov}(0)}$ 

 $au_{\textit{int}} = rac{1}{2}\sum^{+\infty}
ho(k)$ 

MCMC error estimation (correlated)

$$\sigma_{MCMC}^2 = 2\,\tau_{int}\,\sigma_{MC}^2$$

$$Cov(k) = \frac{1}{n} \sum_{t=1}^{n-k} (x_{t+k} - \bar{x})(x_t - \bar{x}),$$

### **Thinning method:**

keep only every k-th sample in the Markov chain and discard the rest

 $a_1^{u_v}$  $a_1^{u_v}$ 1.0 1.0 -0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 50 50 0

Thinning by rate 40

n

#### Why Thinning?

• It provides an **uncorrelated** chain so we can use Monte-Carlo error estimation:

$$\sigma_{MCMC}^2 = 2 \tau_{int} \sigma_{MC}^2$$
  $\sigma_{MC}^2 = \frac{1}{n-1} \sum_{t=1}^{n} (X_t - \hat{\mu})^2$ 

• We aim to generate a set of PDF grids corresponding chain's units. Thinning the chain makes it more applicable.

Autocorrelation function versus time interval

Pb<sup>208</sup> PDF(u-valence) resulting from **MCMC** and **Hessian** methods



- Generating the Markov Chain
- Thinning the chain
- Construct nPDF corresponding to each unit of the thinned chain and perform standard MC error estimation (Saving them in the standard LHAPDF format so that anyone can use such nPDFs)



**Preliminary results** 

### **Conclusion:**

- Despite the MCMC challenges (mainly computational cost), this method has become a powerful tool for determining nPDFs.
- The implementation of this alternative method hasn't finished yet, but so far we have obtained promising results (comparing with Hessian).

### new nCTEQ global nPDF release: CJ15

Accardi et al., arXiv:1602.03154

Functional form for bound protons at Q<sub>0</sub>:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1}(1-x)^{c_2}(1+c_3\sqrt{x}+c_4x)$$

 $i = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}$ 

Atomic number dependence is characterized in the  $c_k$  coefficients as

$$c_k \rightarrow p_k + a_k \ln(A) + b_k \ln^2(A)$$
.  $k = \{1, ..., 5\}$ .

PDF of a nucleus (A – mass, Z – charge):

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

#### **Nuclear Parton Distribution Function (nPDF)**