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Motivation for study kT factorization in QCD

Following the work by M. Deak, F. Hautmann, H.
Jung and K. Kutak: Forward jet production at the
Large Hadron Collider

kT-factorization is relevant for hadron
collision processes in which one of the
hadrons delivers a much smaller momentum
fraction x to the partonic process than the
other hadron. An example is the production
of forward jets.
in kT-factorization there is a momentum
imbalance in the final state allowing for
non-trivial distributions already at LO where
collinear factorization requires at least NLO.
An example is the angle between two jets in
dijet production.
so far, calculations in kT-factorization are
mostly performed at LO, and we want to
move towards a level of automation at NLO
like it exists in collinear factorization.

Distribution of the azimuthal angle.
From A. v. Hameren, P. Kotko, K. Kutak and S. Sapeta: Small-xdynamics in forward–central dijet

correlations at the LHC
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Collinear factorization in QCD at NLO

dσLO =

∫
dxin

xin

dx in
x in

fin(xin)fin(x in)dB(xin, x in)

initial states:

kµ
in = xinPµ

kµ

in
= x inP

µ

dσNLO =
∫ dxin

xin

dx in
x in

{
fin(xin)fin(x in)

[
dV (xin, x in) + dR(xin, x in)

]
cancelling

+

[
fin(xin)

−αs

2πϵ
∫ 1

x in
dzPin(z)fin(x in/z)

+fin(x in)
−αs

2πϵ
∫ 1

xin
dzPin(z)fin(xin/z)

]
dB(xin, x in)

+
[
f (1)in (xin)fin(x in) + fin(xin)f

(1)
in

(x in)
] αs

2π
dB(xin, x in)

}
Finite at all

f (1)
in

(x in)−
1
ϵ

∫ 1

x in

dzPin(z)fin(x in/z) = finite

f (1)in (xin)−
1
ϵ

∫ 1

xin

dzPin(z)fin(xin/z) = finite
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Objective

Hybrid kT factorization in QCD
Establish the same within hybrid kT -factorization, for which the LO cross section formula is:

dσLO =

∫
dxin

xin

d2kT

π

dx in
x in

Fin(xin, kT )fin(x in)dB∗(xin, kT , x in) (1)

The amplitudes inside B∗(xin, kT , x in) depend explicitly on kT .
They involve a space-like initial-state gluon with momentum kµ

in = xinPµ + kµ
T

We define kT as:
P · kT = 0
P · kT = 0

Such amplitudes need care to be well-defined, to be gauge invariant
We apply the auxiliary-parton method, and our objective is within this constraint
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Auxiliary parton method
Introduced by A. v. Hameren, P. Kotko and K. Kutak in Helicity amplitudes for high-energy scattering.
We put our interest on process with one space-like gluon. ω(p1) = g(p1)/q(P1)

g∗(kin)ωin(kin) → ω1(p1)ω2(p2) · · ·ωn(pn).

This process is obtained via named auxiliary parton method from process

q(k1(Λ))ωin(kin) → q(k2(Λ))ω1(p1)ω2(p2) · · ·ωn(pn)

with light-like momenta parametrized with Λ

kµ
1 = ΛPµ, kµ

2 = pµ
Λ = (Λ− xin)Pµ − kµ

T +
|kT |2

2Pµ · P
µ
(Λ− xin)

P
µ
.
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Their difference is

kµ
1 − kµ

2 = kµ
in + O(Λ−1) = xinPµ + kµ

T + O(Λ−1)

Taking Λ → ∞ one will obtain the matrix element with space-like gluon

x2
in|kT |2

g2
s CauxΛ2

|Maux |2(ΛP, kin;pΛ, {pi}n
i=1)

Λ→∞−−−−→ |M∗|2(kin, kin; {pi}n
i=1) (2)

As auxiliary partons we can choose quarks as well as gluons. Then

Caux−q =
N2

c − 1
Nc

,Caux−g = 2Nc .
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The NLO virtual contribution

Virtual contributions

dV ∗ = dV ∗fam + dV ∗unf

Familiar contribution conserve smooth on-shell kT → 0

Unfamiliar contribution dV ∗unf = aϵNcRe(Vaux)dB∗ aϵ =
αs

2π
(4π)ϵ

Γ(1 − ϵ)
; ϵ =

4 − dim
2

Vaux =

(
µ2

|kT |2

)ϵ [2
ϵ

ln
Λ

xin
− iπ + Vaux

]
+O(ϵ) +O(Λ−1)

Vaux−q =
1
ϵ

13
6

+
π2

3
+

80
18

+
1

N2
c

[
1
ϵ2 +

3
2

1
ϵ
+ 4

]
− nf

Nc

[
2
3

1
ϵ
+

10
9

]
Vaux−g = − 1

ϵ2 +
π2

3

Details in E. Blanco, A. Giachino, A. v. Hameren, P. Kotko: One-loop gauge invariant amplitudes with a space-like gluon.
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Unfamiliar real contribution

dR∗ = dR∗fam + dR∗unf

In the unfamiliar case the radiative gluon participates in the consumption of Λ kT = qT + rT

The phase space also factorizes, we can perform analytical integration, the result is:

dR∗unf (kin, kin; {pi}n+1
i=1 ) =

{
aϵNc

(
µ2

|kT |2

)ϵ
[
−2
ϵ

ln
2P · PΛ

|kT |2
+ Raux

]
+O(ϵ,Λ−1)

}
dB∗(kin, kin; {pi}n

i=1)

depends of type of auxiliary partons
violates the smooth on-shell limit and smooth large Λ limit
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Unfamiliar contributions - completed
Collection of virtual and real unfamiliar contribution brings

∆unf dB∗ = dR∗unf + dV ∗unf

general unfamiliar contribution is given by

∆unf =
aϵNc

ϵ

(
µ2

|kT |2

)ϵ
[
Jaux + Juniv + Juniv − 2ln

2P · Pxin

|kT |2

]
where

Juniv =
11
6

− nf

3Nc
− K

Nc
(−ϵ) with K = Nc

(
67
18

− π2

6

)
− 5nf

9

Jaux−g =
11
6

+
nf

3N3
c
+

nf

6N3
c
(−ϵ), Jaux−q =

3
2
− 1

2
(−ϵ)

• No lnΛ
• Target impact factor corrections as in Ciafaloni, Colferai 1999.
• Other terms also known in literature (Regge trajectory, renormalization of the coupling

constant)
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Familiar real collinear singularities

The dR∗fam has a singularity when a radiative gluon becomes collinear to P which leads to

divergence ∆coll with splitting as
1

z(1 − z)
− 2 + z(1 − z) included.

Despite kT , tree-level matrix elements with a space-like gluon still have a singularity when
a radiative gluon becomes collinear to P.

|M∗|2
(
xinP + kT , kin; r , {pi}n

i=1
) r→xr P−−−−→ 2NC

P · r
x2

in
xr (xin − xr )2 |M

∗|2
(
(xin − xr )P + kT , kin; {pi}n

i=1
)

(3)

Similar to usual collinear gluon splitting with only the
1

z(1 − z)
part.

This leads to a non-cancelling divergence similar to the collinear case given by

∆∗
coll(xin, kT ) = −αϵ

ϵ

∫ 1

xin

dz
[

2NC

[1 − z]+
+

2NC

z
+ γgδ(1 − z)

]
F
(xin

z
, kT

)
(4)
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Completed cross section formula

General NLO formula

dσNLO =

∫
dxin

xin

d2kT

π

dx in
x in

{
Fin(xin, kT )fin(x in)

[
dR∗(xin, kT , x in) + dV ∗(xin, kT , x in)

]
cancelling

+
[
F NLO

in (xin, kT ) + Fin(xin, kT )∆unf (xin, kT ) + ∆∗
coll(xin, kT )

]
fin(x in)dB∗(xin, kT , x in)[

f NLO in(x in) + ∆coll

]
Fin(xin, kT )dB∗(xin, kT , x in)

}
(5)

Details in A. v. Hameren, L. Motyka, G. Ziarko: Hybrid kT-factorization and impact factors at NLO. J. High Energ. Phys.
2022, 103 (2022). https://doi.org/10.1007/JHEP11(2022)103 [SPRINGER]

The collinear divergences ∆∗
coll and ∆coll

f NLO in(x in) + ∆coll → finite as in collinear factorization
F NLO

in (xin, kT ) + Fin(xin, kT )∆unf (xin, kT ) + ∆∗
coll(xin, kT ) → still necessity for scheme for

renormalization of PDFs

Progress with subtraction method for ∆∗
coll in A. Giachino, A. v. Hameren, G. Ziarko: A new subtraction scheme

at NLO exploiting the privilege of kT -factorization. [arxiv.org/2312.02808]
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Sumary

We established the framework for calculating cross section within
kT factorization.

We showed the consistency in our scheme (no ln(Λ)).

All divergences are recognized.
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Thank you for listening!

This research was supported by grant No. 2019/35/B/ST2/03531 of the Polish National Science Centre.
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Back-Up
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Real radiation - familiar contribution

Real contribution we defined as

dR∗fam(kin, kin; {pi}n+1
i=1 ) =

aϵµ
2ϵ

πϵ

1
|kT |2

dΣ∗
n+1(kin, kin; {pi}n+1

i=1 )JR({pi}n+1
i=1 ) (6)

aϵ =
αs

2π
(4π)ϵ

Γ(1 − ϵ)
; πϵ =

π1−ϵ

Γ(1 − ϵ)

One parton more in a final state (compared to Born)
One collinear pair and / or one soft parton
The singularities look the same as if the initial-state gluon were on-shell

Independent of the type of auxiliary partons
No lnΛ

There is also unfamiliar component:

dR∗ = dR∗fam + dR∗unf
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Subtraction method

∫ 1

0
dx

1
x

f (x) (7)

is straightforwardly divergent. ∫ 1

0
dx

xϵ

x
f (x) (8)

To demonstrate this, we can apply the Taylor expansion:

∫ 1

0
dx

xϵ

x
f (x) =

∫ 1

0
dx

xϵ

x
[f (x)− f (0)] +

∫ 1

0
dx

xϵ

x
f (0)∫ 1

0
dx

xϵ

x
f (x) =

∫ 1

0
dx

xϵ

x

[
f (0) + x · f ′(0) +

1
2

x2 · f ′′(0) + . . .− f (0)
]
+

∫ 1

0
dx

xϵ

x
f (0)

(9)

Doing the second integral on the right hand side we get:

∫ 1

0
dx

xϵ

x
f (x) =

∫ 1

0
dx · xϵ

[
·f ′(0) + 1

2
x · f ′′(0) + . . .

]
+

1
ϵ

f (0)xϵ
∣∣∣1
0

(10)
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