NLO for hybrid k_{T}-factorization

Andreas van Hameren ${ }^{1}$, Leszek Motyka ${ }^{2}$ and Grzegorz Ziarko ${ }^{1}$
in collaboration with
Etienne Blanco, Alessandro Giachino, Piotr Kotko

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

${ }^{1}$ Institute of Nuclear Physics Polish Academy of Sciences Kraków
${ }^{2}$ Jagiellonian University in Kraków

XXX Cracow Epiphany Conference 2024
This research was supported by grant No. 2019/35/B/ST2/03531 of the Polish National Science Centre.

Motivation for study k_{T} factorization in QCD

Following the work by M. Deak, F. Hautmann, H. Jung and K. Kutak: Forward jet production at the Large Hadron Collider

- kT-factorization is relevant for hadron collision processes in which one of the hadrons delivers a much smaller momentum fraction x to the partonic process than the other hadron. An example is the production of forward jets.
- in kT-factorization there is a momentum imbalance in the final state allowing for non-trivial distributions already at LO where collinear factorization requires at least NLO. An example is the angle between two jets in dijet production.
- so far, calculations in kT-factorization are mostly performed at LO, and we want to move towards a level of automation at NLO like it exists in collinear factorization.

Motivation for study k_{T} factorization in QCD

Following the work by M. Deak, F. Hautmann, H. Jung and K. Kutak: Forward jet production at the Large Hadron Collider

- kT-factorization is relevant for hadron collision processes in which one of the hadrons delivers a much smaller momentum fraction x to the partonic process than the other hadron. An example is the production of forward jets.
- in kT-factorization there is a momentum imbalance in the final state allowing for non-trivial distributions already at LO where collinear factorization requires at least NLO. An example is the angle between two jets in

Distribution of the azimuthal angle.
From A. v. Hameren, P. Kotko, K. Kutak and S. Sapeta: Small-xdynamics in forward-central dijet
correlations at the LHC

Collinear factorization in QCD at NLO

initial states:

$$
d \sigma^{L O}=\int \frac{d x_{i n}}{x_{i n}} \frac{d \bar{x}_{\overline{x_{n}}}}{\bar{x}_{\overline{\bar{n}}}} f_{i n}\left(x_{i n}\right) f_{\overline{i n}}\left(\bar{x}_{\overline{i n}}\right) d B\left(x_{i n}, \bar{x}_{\overline{i n}}\right)
$$

$$
\begin{aligned}
& k_{i n}^{\mu}=x_{i n} P^{\mu} \bar{x}^{\mu} \\
& k_{i n}^{\mu}=\bar{x}_{\overline{i n}} P^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& d \sigma^{N L O}=\int \frac{d x_{i n}}{x_{\text {in }}} \frac{d \bar{x}_{\overline{i n}}}{\bar{x}_{\text {in }}}\left\{f_{\text {in }}\left(x_{\text {in }}\right) f_{\overline{i n}}\left(\bar{x}_{\overline{i n}}\right)\left[d V\left(x_{\text {in }}, \bar{x}_{\overline{i n}}\right)+d R\left(x_{i n}, \bar{x}_{\overline{i n}}\right)\right]_{\text {cancelling }}\right. \\
& +\left[f_{i n}\left(x_{i n}\right) \frac{-\alpha_{s}}{2 \pi \epsilon} \int_{\bar{x}_{\bar{n}}}^{1} d \bar{z} \mathcal{P}_{\overline{i n}}(\bar{z}) f_{\overline{i n}}\left(\bar{x}_{\overline{i n}} / \bar{z}\right)\right. \\
& \left.+f_{i n}\left(\bar{x}_{\overline{i n}}\right) \frac{-\alpha_{s}}{2 \pi \epsilon} \int_{x_{i n}}^{1} d z \mathcal{P}_{\text {in }}(z) f_{i n}\left(x_{i n} / z\right)\right] d B\left(x_{i n}, \bar{X}_{\overline{i n}}\right) \\
& \left.+\left[f_{i n}^{(1)}\left(x_{i n}\right) f_{i n}\left(\bar{x}_{\overline{i n}}\right)+f_{i n}\left(x_{i n}\right) f_{i n}^{(1)}\left(\bar{x}_{\overline{i n}}\right)\right] \frac{\alpha_{s}}{2 \pi} d B\left(x_{i n}, \bar{x}_{\overline{i n}}\right)\right\} \\
& f_{\overline{i n}}^{(1)}\left(\bar{x}_{\overline{i n}}\right)-\frac{1}{\epsilon} \int_{\bar{x}_{\overline{\bar{n}}}}^{1} d \bar{z} \mathcal{P}_{\overline{i n}}(\bar{z}) f_{\overline{i n}}\left(\bar{x}_{\overline{i n}} / \bar{z}\right)=\text { finite } \\
& f_{i n}^{(1)}\left(x_{i n}\right)-\frac{1}{\epsilon} \int_{x_{i n}}^{1} d z \mathcal{P}_{\text {in }}(z) f_{i n}\left(x_{i n} / z\right)=\text { finite }
\end{aligned}
$$

Finite at all

Objective

Hybrid k_{T} factorization in QCD

Establish the same within hybrid k_{T}-factorization, for which the LO cross section formula is:

$$
\begin{equation*}
d \sigma^{L O}=\int \frac{d x_{i n}}{x_{i n}} \frac{d^{2} k_{T}}{\pi} \frac{d \bar{x}_{\overline{i n}}}{\bar{x}_{\overline{i n}}} F_{i n}\left(x_{i n}, k_{T}\right) f_{\overline{i n}}\left(\bar{x}_{\overline{i n}}\right) d B^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right) \tag{1}
\end{equation*}
$$

- The amplitudes inside $B^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right)$ depend explicitly on k_{T}.
- They involve a space-like initial-state gluon with momentum $k_{i n}^{\mu}=x_{i n} P^{\mu}+k_{T}^{\mu}$

We define k_{T} as:

$$
\begin{aligned}
P \cdot k_{T} & =0 \\
\bar{P} \cdot k_{T} & =0
\end{aligned}
$$

- Such amplitudes need care to be well-defined, to be gauge invariant
- We apply the auxiliary-parton method, and our objective is within this constraint

Auxiliary parton method

Introduced by A. v. Hameren, P. Kotko and K. Kutak in Helicity amplitudes for high-energy scattering.
We put our interest on process with one space-like gluon.

$$
\omega\left(p_{1}\right)=g\left(p_{1}\right) / q\left(P_{1}\right)
$$

$$
g^{*}\left(k_{i n}\right) \omega_{\overline{i n}}\left(k_{\overline{i n}}\right) \rightarrow \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right)
$$

This process is obtained via named auxiliary parton method from process

$$
q\left(k_{1}(\Lambda)\right) \omega_{\overline{i n}}\left(k_{\overline{i n}}\right) \rightarrow q\left(k_{2}(\Lambda)\right) \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right)
$$

with light-like momenta parametrized with \wedge

$$
k_{1}^{\mu}=\Lambda P^{\mu}, k_{2}^{\mu}=p_{\Lambda}^{\mu}=\left(\Lambda-x_{i n}\right) P^{\mu}-k_{T}^{\mu}+\frac{\left|k_{T}\right|^{2}}{2 P^{\mu} \cdot \bar{P}^{\mu}\left(\Lambda-x_{i n}\right)} \bar{P}^{\mu} .
$$

Auxiliary parton method

We put our interest on process with one space-like gluon.

$$
\omega\left(p_{1}\right)=g\left(p_{1}\right) / q\left(P_{1}\right)
$$

$$
g^{*}\left(k_{i n}\right) \omega_{\overline{i n}}\left(k_{\overline{i n}}\right) \rightarrow \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right)
$$

This process is obtained via named auxiliary parton method from process

$$
q\left(k_{1}(\Lambda)\right) \omega_{\overline{i n}}\left(k_{\text {in }}\right) \rightarrow q\left(k_{2}(\Lambda)\right) \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right)
$$

with light-like momenta parametrized with \wedge

$$
k_{1}^{\mu}=\Lambda P^{\mu}, k_{2}^{\mu}=p_{\Lambda}^{\mu}=\left(\Lambda-x_{i n}\right) P^{\mu}-k_{T}^{\mu}+\frac{\left|k_{T}\right|^{2}}{2 P^{\mu} \cdot \bar{P}^{\mu}\left(\Lambda-x_{i n}\right)} \bar{P}^{\mu}
$$

Their difference is

$$
k_{1}^{\mu}-k_{2}^{\mu}=k_{i n}^{\mu}+O\left(\Lambda^{-1}\right)=x_{i n} P^{\mu}+k_{T}^{\mu}+O\left(\Lambda^{-1}\right)
$$

Taking $\Lambda \rightarrow \infty$ one will obtain the matrix element with space-like gluon

$$
\begin{equation*}
\frac{x_{i n}^{2}\left|k_{T}\right|^{2}}{g_{s}^{2} C_{a u x} \Lambda^{2}}\left|\bar{M}^{\text {aux }}\right|^{2}\left(\Lambda P, k_{i n} ; p_{\Lambda},\left\{p_{i}\right\}_{i=1}^{n}\right) \xrightarrow{\Lambda \rightarrow \infty}\left|\bar{M}^{*}\right|^{2}\left(k_{i n}, k_{i \overline{i n}} ;\left\{p_{i}\right\}_{i=1}^{n}\right) \tag{2}
\end{equation*}
$$

As auxiliary partons we can choose quarks as well as gluons. Then

$$
C_{a u x-q}=\frac{N_{c}^{2}-1}{N_{c}}, C_{a u x-g}=2 N_{c} .
$$

The NLO virtual contribution

Virtual contributions

$$
d V^{*}=d V^{* f a m}+d V^{* u n f}
$$

- Familiar contribution conserve smooth on-shell $k_{T} \rightarrow 0$
- Unfamiliar contribution $d V^{* u n f}=a_{\epsilon} N_{c} \operatorname{Re}\left(V_{a u x}\right) d B^{*}$

$$
a_{\epsilon}=\frac{\alpha_{s}}{2 \pi} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)} ; \quad \epsilon=\frac{4-\operatorname{dim}}{2}
$$

$$
\begin{gathered}
\mathcal{V}_{a u x}=\left(\frac{\mu^{2}}{\left|k_{T}\right|^{2}}\right)^{\epsilon}\left[\frac{2}{\epsilon} \ln \frac{\Lambda}{x_{i n}}-i \pi+\overline{\mathcal{V}}_{a u x}\right]+\mathcal{O}(\epsilon)+\mathcal{O}\left(\Lambda^{-1}\right) \\
\overline{\mathcal{V}}_{a u x-q}=\frac{1}{\epsilon} \frac{13}{6}+\frac{\pi^{2}}{3}+\frac{80}{18}+\frac{1}{N_{c}^{2}}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2} \frac{1}{\epsilon}+4\right]-\frac{n_{f}}{N_{c}}\left[\frac{2}{3} \frac{1}{\epsilon}+\frac{10}{9}\right] \\
\overline{\mathcal{V}}_{\text {aux }-g}=-\frac{1}{\epsilon^{2}}+\frac{\pi^{2}}{3}
\end{gathered}
$$

Details in E. Blanco, A. Giachino, A. v. Hameren, P. Kotko: One-loop gauge invariant amplitudes with a space-like gluon.

Unfamiliar real contribution

$$
d R^{*}=d R^{* f a m}+d R^{* u n f}
$$

In the unfamiliar case the radiative gluon participates in the consumption of $\Lambda \quad k_{T}=q_{T}+r_{T}$

The phase space also factorizes, we can perform analytical integration, the result is:
$d R^{* u n f}\left(k_{i n}, k_{\overline{i n}} ;\left\{p_{i}\right\}_{i=1}^{n+1}\right)=\left\{a_{\epsilon} N_{c}\left(\frac{\mu^{2}}{\left|k_{T}\right|^{2}}\right)^{\epsilon}\left[-\frac{2}{\epsilon} \ln \frac{2 P \cdot \bar{P} \Lambda}{\left|k_{T}\right|^{2}}+\bar{R}_{\text {aux }}\right]+\mathcal{O}\left(\epsilon, \Lambda^{-1}\right)\right\} d B^{*}\left(k_{i n}, k_{i n} ;\left\{p_{i}\right\}_{i=1}^{n}\right)$

- depends of type of auxiliary partons
- violates the smooth on-shell limit and smooth large \wedge limit

Unfamiliar contributions - completed

Collection of virtual and real unfamiliar contribution brings

$$
\Delta_{u n f} d B^{*}=d R^{* u n f}+d V^{* u n f}
$$

general unfamiliar contribution is given by

$$
\Delta_{\text {unf }}=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{T}\right|^{2}}\right)^{\epsilon}\left[\mathcal{J}_{\text {aux }}+\mathcal{J}_{\text {univ }}+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 P \cdot \bar{P} x_{\text {in }}}{\left|k_{T}\right|^{2}}\right]
$$

where

$$
\begin{array}{cl}
\mathcal{J}_{\text {univ }}=\frac{11}{6}-\frac{n_{f}}{3 N_{c}}-\frac{\mathcal{K}}{N_{c}}(-\epsilon) \quad \text { with } & \mathcal{K}=N_{c}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 n_{f}}{9} \\
\mathcal{J}_{\text {aux }-g}=\frac{11}{6}+\frac{n_{f}}{3 N_{c}^{3}}+\frac{n_{f}}{6 N_{c}^{3}}(-\epsilon), & \mathcal{J}_{\text {aux }-q}=\frac{3}{2}-\frac{1}{2}(-\epsilon)
\end{array}
$$

- No In^
- Target impact factor corrections as in Ciafaloni, Colferai 1999.
- Other terms also known in literature (Regge trajectory, renormalization of the coupling constant)

Familiar real collinear singularities

The $d R^{* f a m}$ has a singularity when a radiative gluon becomes collinear to \bar{P} which leads to divergence $\Delta_{\text {coll }}$ with splitting as $\frac{1}{z(1-z)}-2+z(1-z)$ included.

Despite k_{T}, tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

$$
\begin{equation*}
\left|\bar{M}^{*}\right|^{2}\left(x_{i n} P+k_{T}, k_{i \overline{i n}} r,\left\{p_{i}\right\}_{i=1}^{n}\right) \xrightarrow{r \rightarrow x_{r} P} \frac{2 N_{C}}{P \cdot r} \frac{x_{i n}^{2}}{x_{r}\left(x_{i n}-x_{r}\right)^{2}}\left|\bar{M}^{*}\right|^{2}\left(\left(x_{i n}-x_{r}\right) P+k_{T}, k_{i n} ;\left\{p_{i}\right\}_{i=1}^{n}\right) \tag{3}
\end{equation*}
$$

Similar to usual collinear gluon splitting with only the $\frac{1}{z(1-z)}$ part.

This leads to a non-cancelling divergence similar to the collinear case given by

$$
\begin{equation*}
\Delta_{c o l /}^{*}\left(x_{i n}, k_{T}\right)=-\frac{\alpha_{\epsilon}}{\epsilon} \int_{x_{i n}}^{1} d z\left[\frac{2 N_{C}}{[1-z]_{+}}+\frac{2 N_{C}}{z}+\gamma_{g} \delta(1-z)\right] F\left(\frac{x_{i n}}{z}, k_{T}\right) \tag{4}
\end{equation*}
$$

Completed cross section formula

General NLO formula

$$
\begin{align*}
d \sigma^{N L O} & =\int \frac{d x_{i n}}{x_{i n}} \frac{d^{2} k_{T}}{\pi} \frac{d \bar{x}_{\overline{i n}}}{\bar{x}_{\overline{i n}}}\left\{F_{\text {in }}\left(x_{i n}, k_{T}\right) f_{\text {in }}\left(\bar{x}_{\overline{i n}}\right)\left[d R^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right)+d V^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right)\right]_{\text {cancelling }}\right. \\
& +\left[F_{i n}^{N L O}\left(x_{i n}, k_{T}\right)+F_{i n}\left(x_{i n}, k_{T}\right) \Delta_{\text {unf }}\left(x_{i n}, k_{T}\right)+\Delta_{\text {coll }}^{*}\left(x_{i n}, k_{T}\right)\right] f_{\text {in }}\left(\bar{x}_{\overline{i n}}\right) d B^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right) \\
& {\left.\left[f^{N L O} \overline{\text { in }}\left(\bar{x}_{\overline{i n}}\right)+\Delta_{\overline{c o l l}}\right] F_{\text {in }}\left(x_{i n}, k_{T}\right) d B^{*}\left(x_{i n}, k_{T}, \bar{x}_{\overline{i n}}\right)\right\} } \tag{5}
\end{align*}
$$

Details in A. v. Hameren, L. Motyka, G. Ziarko: Hybrid kT-factorization and impact factors at NLO. J. High Energ. Phys. 2022, 103 (2022). https://doi.org/10.1007/JHEP11(2022)103 [SPRINGER]

The collinear divergences $\Delta_{\text {coll }}^{*}$ and $\Delta_{\overline{\text { coll }}}$ $f^{N L O} \overline{\text { in }}\left(\bar{x}_{\overline{\text { in }}}\right)+\Delta_{\overline{\text { coll }}} \rightarrow$ finite as in collinear factorization $F_{i n}^{N L O}\left(x_{i n}, k_{T}\right)+F_{i n}\left(x_{i n}, k_{T}\right) \Delta_{\text {unf }}\left(x_{i n}, k_{T}\right)+\Delta_{\text {coll }}^{*}\left(x_{i n}, k_{T}\right) \rightarrow$ still necessity for scheme for renormalization of PDFs

Progress with subtraction method for $\Delta_{\text {coll }}^{*}$ in A. Giachino, A. v. Hameren, G. Ziarko: A new subtraction scheme at NLO exploiting the privilege of k_{T}-factorization. [arxiv.org/2312.02808]

Sumary

- We established the framework for calculating cross section within k_{T} factorization.
- We showed the consistency in our scheme (no $\ln (\Lambda))$.
- All divergences are recognized.

Thank you for listening!

This research was supported by grant No. 2019/35/B/ST2/03531 of the Polish National Science Centre.

Back-Up

Real radiation - familiar contribution

Real contribution we defined as

$$
\begin{aligned}
d R^{* f a m}\left(k_{i n}, k_{i n} ;\left\{p_{i}\right\}_{i=1}^{n+1}\right) & =\frac{a_{\epsilon} \mu^{2 \epsilon}}{\pi_{\epsilon}} \frac{1}{\left|k_{T}\right|^{2}} d \Sigma_{n+1}^{*}\left(k_{i n}, k_{i n} ;\left\{p_{i}\right\}_{i=1}^{n+1}\right) J_{R}\left(\left\{p_{i}\right\}_{i=1}^{n+1}\right) \\
a_{\epsilon} & =\frac{\alpha_{s}}{2 \pi} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)} ; \quad \pi_{\epsilon}=\frac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)}
\end{aligned}
$$

- One parton more in a final state (compared to Born)
- One collinear pair and / or one soft parton
- The singularities look the same as if the initial-state gluon were on-shell
- Independent of the type of auxiliary partons
- No In^

There is also unfamiliar component:

$$
d R^{*}=d R^{* f a m}+d R^{* u n f}
$$

Subtraction method

$$
\begin{equation*}
\int_{0}^{1} d x \frac{1}{x} f(x) \tag{7}
\end{equation*}
$$

is straightforwardly divergent.

$$
\begin{equation*}
\int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(x) \tag{8}
\end{equation*}
$$

To demonstrate this, we can apply the Taylor expansion:

$$
\begin{align*}
& \int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(x)=\int_{0}^{1} d x \frac{x^{\epsilon}}{x}[f(x)-f(0)]+\int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(0) \\
& \int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(x)=\int_{0}^{1} d x \frac{x^{\epsilon}}{x}\left[f(0)+x \cdot f^{\prime}(0)+\frac{1}{2} x^{2} \cdot f^{\prime \prime}(0)+\ldots-f(0)\right]+\int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(0) \tag{9}
\end{align*}
$$

Doing the second integral on the right hand side we get:

$$
\begin{equation*}
\int_{0}^{1} d x \frac{x^{\epsilon}}{x} f(x)=\int_{0}^{1} d x \cdot x^{\epsilon}\left[\cdot f^{\prime}(0)+\frac{1}{2} x \cdot f^{\prime \prime}(0)+\ldots\right]+\left.\frac{1}{\epsilon} f(0) x^{\epsilon}\right|_{0} ^{1} \tag{10}
\end{equation*}
$$

