Tau anomalous magnetic moment measurements at ATLAS and CMS

Yuriy Volkotrub

on behalf of the ATLAS and CMS collaborations

Jagiellonian University

11th January 2024

< □ > < /□ >

 τ -lepton g-2 measurements

Outline

2 ATLAS measurement overview

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 2/30

12

A D N A B N A B N A B N

Motivation

- Magnetic moment of the particle and its spin are related by g-factor: $\vec{\mu} = \frac{gq}{2m}\vec{S}$
- Anomalous magnetic moments $a_l = \frac{(g-2)l}{2}$ are sensitive to BSM physics
- Dirac equation predicts g = 2, but higher-order corrections (QED, weak, hadronic loops, ...) lead to ≠ 2
 a_τ is poorly constrained experimentally:
- a_{τ} is poorly constrained experimentally: -0.52 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC 35 35 (2004) 159

Due to it can be sensitive to BSM effects

 For example, measurements of a_e and a_μ are the most accurate.
 Difference with SM predictions observed for a_e (2.5σ) and a_μ (up to 4.2σ)

- Sensitivity to supersymmetry effects depends on lepton mass $\delta a_l \sim m_l^2/M_S^2$
 - $a_{ au}$ is up to \sim 280 more sensitive to new physics than a_{μ}

Muon g-2 Collaboration, PRL 131 (2023) 161802 represents a factor of 2 improvement in precision compared to the 2021 result

イロト イボト イヨト イヨト

Tau decays

 1-prong: tau decays into 1 charged particle with BR~ 80%:

$$BR(\tau^{\pm} \to e^{\pm} + \nu_e + \nu_{\tau}) = 17.8\%$$

$$BR(\tau^{\pm} \to \mu^{\pm} + \nu_{\mu} + \nu_{\tau}) = 17.4\%$$

$$BR(\tau^{\pm} \to \pi^{\pm} + n\pi^0 + \nu_{\tau}) = 45.6\%$$

3-prong:

$$BR(\tau^{\pm} \rightarrow \pi^{\pm}\pi^{\mp}\pi^{\pm} + neutral pions) = 19.4\%$$

Selection in UPCs:
 1 lepton + 1 charged particle
 1 lepton + 3 charged particles

・ 何 ト ・ ヨ ト ・ ヨ ト

Basics of ultra-peripheral collisions (UPC)

- UPC of heavy ions
 - impact parameter > 2x nucleus radius
 - electromagnetic (EM) fields of relativistic ions considered as fluxes of photons (scale ~ Z²)
- Advantages of UPCs of heavy-ions:
 - no hadronic interaction between nuclei
 - very low hadronic pileup (little activity in the detector) - exclusive selections possible
 - high charge = large photon flux
 - increased cross-sections wrt to pp system
 (Z⁴ scaling)
 - ion emitting photon does not break up
 - Iow-p_T particles can be triggered and reconstructed
 - as a probe can be used to study very rare processes (exclusive dielectrons, light-by-light, ALP searches, etc)

$\gamma\gamma \rightarrow \tau^+\tau^-$ production in Pb+Pb UPC

- Well described in Weizsäcker-Williams approximation
- Hadronic interactions strongly suppressed \rightarrow exclusivity selections
- Low p_T thresholds in trigger and offline reconstruction
- Zero Degree Calorimeters (ZDC) and a Forward Calorimeter (FCal) @ATLAS and Forward Hadron (HF) @CMS calorimeter allow to control event activity above the noise threshold in the forward region
- Exploit $\gamma\gamma \rightarrow \tau\tau$ cross section to set limits on a_{τ}
- $\gamma\gamma \rightarrow \tau\tau$ production observed for the first time in hadron collisions at the LHC in 2022

- L. Beresford, J. Liu, PRD 102 (2020) 113008 M. Dyndal et al., PLB 809 (2020) 135682
- This talk discusses new measurements performed by the ATLAS and CMS Collaborations in UPC Pb+Pb at 5.02 TeV. The articles were highlighted as an Editor's Suggestion in the journal Physical Review Letters.

ATLAS measurement overview

Yuriy Volkotrub (Jagiellonian University)

 $\tau\text{-lepton}$ g-2 measurements

11th January 2024 7 / 30

э

< □ > < 同 > < 回 > < 回 > < 回 >

Ditau events

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 8 / 30

Signal categories

- First observation of $\gamma\gamma \rightarrow \tau^+\tau^-$ process in HI UPC using 1.44 nb⁻¹ of 2018 UPC data at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by ATLAS
- Signal τ -leptons are low-energetic, typically with $p_T < 10$ GeV
- Events classified based on the charged τ -lepton decay products
- Three signal regions:

requiring 0n0n and cluster veto to suppress dissociative and hadronic backgrounds

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 9 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ditau event selection

- Single muon trigger recording events having muon with $p_T > 4 \text{ GeV}$
- Veto on forward neutron activity (based on ZDC signal) \rightarrow MC samples reweighed
- Kinematic selection:
 - muons: $p_T > 4$ GeV, $|\eta| < 2.4$
 - electrons: $p_T > 4$ GeV, $|\eta| < 2.47$
 - tracks: $p_T > 100$ MeV, $|\eta| < 2.5$

• Other requirements:

 veto on additional low-p_T clusters (for μ1T-SR and μ3T-SR) and low-p_T tracks

< ロ > < 同 > < 回 > < 回 >

- For μ 1T-SR: $p_T^{\mu,trk} > 1$ GeV
- For μ 3T-SR: $m_{3trks} < 1.7$ GeV

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 10 / 30

Backgrounds

- Main background contributions from dimuon production and diffractive photonuclear interactions
- Background from $\gamma\gamma \rightarrow \mu\mu(\gamma)$ production estimated using MC simulation, constrained by a data CR
- Already pre-fit distributions in the two muon CR show good agreement of data and MC

Backgrounds

- Diffractive photonuclear present in μ 1T-SR and μ 3T-SR signal regions, estimated with data-driven technique
- Control regions defined with additional track with $p_T < 500$ MeV and allowing events from Xn0n category
- Event yields extrapolated from control to signal region by relaxing the veto on additional (unmatched) clusters from 0 to 8
- Normalisation done to the event yield in the region with 4 to 8 unmatched clusters

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 12 / 30

Observation of exclusive ditau production

- The γγ → τ⁺τ⁻ signal strength and a_τ value are extracted using a profile likelihood fit using the muon p_T distribution
- Main background from γγ → μμ(γ) production estimated using MC simulation, constrained by a data CR
- Simultaneous fit combining all signal regions and dimuon control region
 - Dimuon control region ($\gamma\gamma \rightarrow \mu\mu$ events) used to reduce systematic uncertainty from the photon flux
- Calculations are based on the same parameterization as was used in previous LEP measurements
- Clear observation ($\gg 5\sigma$) of $\gamma\gamma \rightarrow \tau\tau$ process

CMS measurement overview

Yuriy Volkotrub (Jagiellonian University)

 $\tau\text{-lepton}$ g-2 measurements

11th January 2024 14 / 30

э

< □ > < 同 > < 回 > < 回 > < 回 >

Ditau events

CMS Experiment at the LHC, CERN Data recorded: 2015-Dec-06 21:41:27.033612 GMT Run / Event / LS: 263400 / 88515785 / 849

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 15 / 30

イロト イヨト イヨト イヨト 二日

Event Selection

- Measurement uses 0.4 nb^{-1} of 2015 UPC Pb+Pb data recorded at $\sqrt{s_{\rm NN}}=5.02$ TeV with a trigger requiring 1 muon, at least 1 track in the pixel detector and no HF activity in at least one side
- The signal region consists of 1 muon and 3 charged hadrons (semileptonic decay mode, τ_{3prong}):

Event selection	Fiducial phase-space region		
μ	$p_T^{\mu} > 3.5 \text{ GeV for } \eta < 1.2 \ p_T^{e} > 2.5 \text{ GeV for } 1.2 < \eta < 2.4$		
π^{\pm}	$p_T > 0.5~{\rm GeV}$ for leading π^\pm $p_T > 0.3~{\rm GeV}$ for (sub-)sub-leading π^\pm $ \eta < 2.5$		
$ au_{3 \mathrm{prong}}$	$p_T^{ m vis} > 0.2 \; { m GeV} \ 0.2 \; { m GeV} < m_{\pi\pi\pi} < 1.5 \; { m GeV}$		

 The background was estimated with the ABCD method with background regions with more charged hadrons and higher HF activity (HF tower > 4 GeV)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Signal and Background Events

- Figures below show the control plots for the leptonic $\tau,$ hadronic τ and $\tau^+\tau^-$ system
- Control plots show great agreement between expectations (MC) and data
 - signal MC is scaled to the integrated luminosity
 - an almost bkg-free phase space region
 - unambiguous reconstruction of the $\tau^+\tau^-$ system

Signal yield estimation

- Binned maximum likelihood fit on the distribution of $\Delta \phi(\tau_{\mu}, \tau_{3 prong})$
 - ABCD background + MC signal (free scale) \rightarrow data
 - MC signal (peaky) and bkg template (flat) from data
- Postfit signal events: 77 \pm 12; the best-fit of the signal strength is $0.99^{+0.16}_{-0.14}$
- Observation significance well above 5 σ
 - taking into account systematic uncertainties

Fiducial cross section

• $\sigma_{\text{fiducial}} = 4.8 \pm 0.6 \text{ stat} \pm 0.5 \text{ syst } \mu \text{b}$

Yuriy Volkotrub (Jagiellonian University)

11th January 2024 19 / 30

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• ATLAS:

•
$$a_{ au} = -0.041$$
 at: 68% CL $(-0.050, -0.029)$ and 95% CL $(-0.057, 0.024)$

from combined fit

- CMS:
 - $a_{\tau} = 0.001$ at: 68% CL (-0.088, 0.056)

- Both ATLAS and CMS provide their first constraints on a_{τ}
- ATLAS precision (stat.-dominated) competitive with DELPHI@LEP (PDG) limits

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 20 / 30

Summary & Outlook

- The $\gamma\gamma \rightarrow \tau^+\tau^-$ production was clearly observed by ATLAS and CMS in UPC Pb+Pb collisions.
 - Both experiments provide their first constraints on a_{τ} with above 5σ .
- ATLAS precision is comparable to the DELPHI@LEP (PDG) results.
- Statistical uncertainties are dominated in both experiments.
- The result is largely limited by statistics, what will improve with Run-3 data.
- Combining ATLAS and CMS $\gamma\gamma \rightarrow \tau^+\tau^-$ results is in progress.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thank you for your attention!

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 22 / 30

э

A D N A B N A B N A B N

Backup

3

< ロ > < 回 > < 回 > < 回 > < 回 >

Literature: constraints on a_{τ}

Interest in measuring a_{τ} at the LHC revisited recently

- Theoretical investigations outlined in:
 - F.del Aguila et al., Phys Lett B, 271, 1–2 (1999)
 - S. Atağ, A. Billur, JHEP11 2010, 060 (2010)
 - L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682

This paper suggested to use datasets from ATLAS experiment to improve the sensitivity on a_{τ}

Mateusz had a presentation in the past HonexComb meeting

- Final results from 5.02 TeV Pb+Pb UPC from ATLAS
 - ATLAS Collaboration published in PRL, Phys. Rev. Lett. 131 (2023) 151802
- Final results from 5.02 TeV Pb+Pb UPC from CMS
 - CMS Collaboration published in PRL, Phys. Rev. Lett. 131 (2023) 151803

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

ATLAS detector

- Large general-purpose detector with almost 4π coverage
- $\eta = -\log(tan(\theta/2))$
- Inner detector $|\eta| < 2.5$
- Muon system $|\eta| < 2.7$ (trig. 2.4)
- Calorimetry out to |η| < 4.9
- Zero-Degree-Calorimeters capture neutral particles with |η| > 8.3

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

A D N A B N A B N A B N

3

25 / 30

Overview of uncertainties (ATLAS)

- Detector:
 - muon trigger efficiency
 - muon/electron reconstruction/identification efficiency and calibration
 - track reconstruction efficiency
 - cluster reconstruction efficiency and calibration
- Background:
 - photonuclear background template variation
- Theory:
 - photon flux modelling (SuperChic3 and Starlight)
 - τ decay modelling (Tauola and Pythia8)
 - 0n0n ZDC reweighting variation

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > <

Overview of uncertainties (ATLAS)

The dominant sources:

- muon trigger efficiency (stat/sys)
- τ-lepton decay
- track reconstruction efficiency dominant ($\approx 20\%$) pre-fit contribution is photon-flux uncertainty, after the post-fit it becomes subdominant

Yuriy Volkotrub (Jagiellonian University)

 τ -lepton g-2 measurements

11th January 2024 27 / 30

э

Overview of uncertainties (CMS)

- Statistical uncertainty is 13%.
- The total systematical error is 9.7%. The dominant sources:
 - muon efficiency
 - integrated luminosity
 - pion efficiency
- Total uncertainty comparable to the current theory uncertainty:

and a second sec		and the second se
CMS		
Source		Uncertainty (%)
Muon efficiency	6.7	
Integrated luminosity	5.0	
Pion efficiency	3.6	
Simulation sample size (bin-by-bin)	3.0	
Simulation sample size (efficiency)	1.1	
HF scale effect on bkg shape	0.9	
τ lepton branching fraction	0.6	
Effect on n _{ch} on bkg shape	0.2	
Total	9.7	

Yuriy Volkotrub (Jagiellonian University)

11th January 2024 28 / 30

Inputs for TRExFitter (ATLAS)

- Binned profile likelihood based on maximum-likelihood principle, profile-likelihood-ratio test-statistics and asymptotic approximation:
 - fit a_{τ} using p_{T}^{μ} distribution in three SRs and 2 μ -CR channels (ATLAS)
- Asymptotic behavior of likelihood for the combined fit (Bayesian inference cannot be used, i.e. BLUE tool)

