${\bf D}^*$  polarisation measurements in  ${\bf B}\to {\bf D}^*\tau\nu~$  at Belle and Belle II. Model independent approach.

Mateusz Kaleta (Institute of Nuclear Physics PAS)

#### Introduction

#### Motivation

- $B \to D^{(*)} \tau \nu$  decays are sensitive to new amplitudes at tree-level, heavy lepton in the final state
- Large number of observables:  $R(D^{(*)})$ , polarisations  $\tau$  i  $D^*$ ,  $q^2$  distributions,
- Good theoretical tools; precise SM predictions, small hadronic uncertainties.

$$\mathsf{R}\big(D^{(*)}\big) = \frac{\mathcal{B}\big(B \to D^{(*)} \tau \nu\big)}{\mathcal{B}\big(B \to D^{(*)} \ell \nu\big)}$$



Combined R(D) and  $R(D^*)$  in tension with SM prediction at  $3\sigma$  level.

# **Current measurements: angular characteristics**

## D\* polarisation at Belle



$$\begin{split} B^0 &\to D^{*-} \tau^+ \nu_\tau \\ \tau^+ &\to \ell^+ \nu_\ell \bar{\nu}_\tau, \tau^+ \to \pi^+ \bar{\nu}_\tau \end{split}$$

$$F_L(D^*) = 0.60 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)}$$

- The signal yields obtained in the bins of cosθ<sub>hel</sub> were re-weighted with the following scale factors (s<sub>l</sub>) to correct for acceptance variations.
- Correction factors s<sub>I</sub> extracted from MC assuming Standard Model decay dynamics

| $\cos \theta_{hel}$ | S               |
|---------------------|-----------------|
| (-1, -0.67)         | $0.98 \pm 0.01$ |
| (-0.67, -0.33)      | $0.96 \pm 0.01$ |
| (-0.33, 0)          | $1.08 \pm 0.01$ |

Results consistent with SM prediction at  $1.6\sigma-1.8\sigma$ 

Karol Adamczyk. PhD thesis, [arXiv:1903.03102] (Belle Collaboration)

# **Current measurements: angular characteristics**

### D\* polarisation at LHCb (2023)

$$B^0 \to D^{*-} \tau^+ \nu_{\tau}$$
  
 $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \nu_{\tau}$ 

$$F_L(D^*) = 0.43 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

Compatible with SM predictions and with Belle results.

[arXiv:2311.05224v1] (LHCb Collaboration)

### au polarisation at Belle

$$B \to \bar{D}^* \tau^+ \nu_{\tau}$$
$$\tau^- \to \pi^- \nu_{\tau}, \ \rho^- \nu_{\tau}$$

$$P_{\tau} = -0.38 \pm 0.51 \, (stat) \pm 0.20 \, (syst)$$

Consistent with SM prediction at  $0.6\sigma$  [PRL118 211801 (2017), PRD97 012004 (2018)] (Belle Collaboration)

Both measurements performed assuming Standard Model decay dynamics.

# Goal of this analysis

## Main goal

- Enhancing experimental constraints on  $B \to \bar{D}^* \tau \nu_{\tau}$  by precise measurements of angular observables.
- Focusing on  $F_L(D^*)$ .

## Specific goals

- Model-independent corrections for acceptance effects
- Increase stastistics w.r.t. previous Belle analysis:
  - · combined analysis of Belle and Belle II data
  - adding charged B channel:  $B^+ \to D^* \tau \nu$
  - including more D decay channels in the analysis

• Perform measurements in several q<sup>2</sup> bins

#### Kinematic variables



- $q^2$  effective mass squared of the  $\tau \nu$  system
- θ<sub>hel</sub>(D\*) angle between D
   and B in D\* rest frame

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4}\left[2F_L(D^*)\cos^2\theta_{hel}(D^*) + \left(1 - F_L(D^*)\right)\sin^2\theta_{hel}(D^*)\right]$$

 $q^2$  and  $cos\theta_{hel}(D^*)$  can be reconstructed at B-factories with hadronic decays of  $B_{tag}$ 

## **Acceptance effects**

Entries / (0.4 GeV²) 0009 0009 0009

4000

2000

Belle II





\*True kinematics is used for reconstructed events.



Decay channel: 
$$\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$$
  
 $D^{*+} \to D^0 \pi^+$   
 $\tau^- \to \ell \bar{\nu}_{\ell} \nu_{\tau}$ 

Signal decays generated assuming Standard Model decay dynamics.

## **Efficiency map**

- 1. Pick four variables that characterize the decay and can be reconstructed experimentally:
  - $cos\theta_{hel}(D^*)$  cosine helicity angle  $D^*$
  - q<sup>2</sup> four-momentum transfer squared
  - $ilde{E}_d$  normalised au daughter energy
  - $\cos \theta_d$   $\tau$  daughter polar angle

2. Create a 4D efficiency map by dividing reconstructed histograms by generated ones.

$$w_{ijkl} = \frac{N_{ijkl}^{rec}}{N_{ijkl}^{gen}} \frac{N_{total}^{gen}}{N_{total}^{rec}}$$

 $N_{ijkl}$  - number of events per bin  $N_{tot}$  - total number of events



1D projections of 4D efficiency maps. Each variable was divided in 5 equidistant bins. Plot generated for Belle geometry, using Standard Model decay dynamics.

# Reweighting

3. Reweight reconstructed distributions using  $w_{ijkl}$  to recover generated observables



Generated (red) and reconstructed + reweghted distributions (blue). Plots made on independent sample generated with non-SM decay dynamics.

## **Summary**

- Semitauonic B-meson decays currently on spotlight
- Improving experimental results for angular analyses can be useful for interpretation of current anomalies
- Studies on signal MC show the D\* polarisation measurement is challenging due to large acceptance effects
- We plan to apply model-independent acceptance corrections not considered previously