MESOMS Formilab SENERGY Office of Science

Synergistic Studies on Superconducting RF Cavities for Accelerator, Quantum Information Science, and Dark Matter Search Applications

Daniel Bafia

P5 Townhall

June 5th, 2023

The Versatile Bulk Nb Superconducting Radio-Frequency Cavity

2

Advances in Accelerator Technology due to Material Science

- Goal of SRF accelerator R&D: simultaneously high Q and gradient
 - → Cheaper & better accelerators
- In-depth material science studies have helped to identify several sources for for excellent cavity performance
- Such studies on the N-doping of cavities have helped to pave the way for accelerators such LCLS-II and LCLS-II HE

A. Romanenko et al, Proceedings of SRF'2019, THP014

Advances in QIS Due to Material Science

- Goal of SRF QIS R&D: Achieve highest Q₀ at mK and low field
 - Longer photon lifetimes → better quantum computer
 - More sensitive probe to RF characterization of materials
- Material science has identified two key loss mechanisms in cavities in the quantum regime
 - Enabled 10x improvement over previous state-of-the-art

Fermilab

M. Checchin et al. PRA 18, 034013 (2022)

Concluding Remarks

Due to high Q and high Q/high gradient R&D, new limits on dark matter and BSM particle physics searches have been made!

Continued improvement in these cavities requires to further build up a work force that is capable of working at the intersection of material science and R&D

