Broader Impacts of Muon Collider R&D

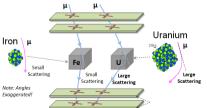
Ben Rosser

University of Chicago

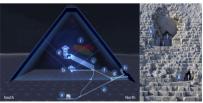
June 5, 2023

Broader Impacts of Future Colliders

- To build future colliders: need **holistic** arguments about why this research is beneficial to society.
- ITF evaluated **negative** impacts: time, money, power, risk. What about **positive** impacts?


Proposal Name	Collider	Lowest	Technical	Cost	Performance	Overal
(c.m.e. in TeV)	Design	TRL	Validation	Reduction	Achievability	Risk
(cime: m rev)	Status	Category	Requirement	Scope	7 tellie viiolitty	Tier
FCCee-0.24	II	caregory	requirement	Stope		1
CEPC-0.24	II					- 1
ILC-0.25	I					- 1
CCC-0.25	III					2
CLIC-0.38	II					- 1
CERC-0.24	III					2
ReLiC-0.24	V					2
ERLC-0.24	V					2
XCC-0.125	IV					2
MC-0.13	III					3
ILC-3	IV					2
CCC-3	IV					2
CLIC-3	II					1
ReLiC-3	IV					3
MC-3	III					3
LWFA-LC 1-3	IV					4
PWFA-LC 1-3	IV					4
SWFA-LC 1-3	IV					4
MC 10-14	IV					3
LWFA-LC-15	V					4
PWFA-LC-15	V					4
SWFA-LC-15	V					4
FCChh-100	II					3
SPPC-125	III					3
Coll.Sea-500	V					4

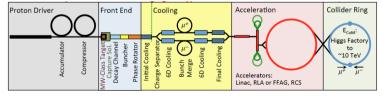
NSF


ITF Report (2208.06030)

Broader Impacts of Muon Colliders

- R&D towards a muon collider will enable development of new technologies:
 - Some **in common** with other colliders: superconducting RF cavities, high-field magnets, work on microelectronics and AI for detector design and readout systems, etc.
 - Enabling other experiments: neutrino factories, fixed-target experiments, CLFV, etc.
 - **Muon scanning**: lots of interest, currently using cosmic ray muons for archaeology, engineering, defense, monitoring nuclear reactors, volcanology, and more!
- Other examples of potential positive impacts that we should consider:
 - Significant **economic benefits** to the host site/country (e.g. CERN in Geneva!)
 - Significant opportunities for STEM education and outreach.

Locke and M. Hohlmann



Procureur et al (10.1038)

3 / 4

Workforce Development

- I had opportunities to do detector R&D in grad school:
 - Worked on ATLAS HL-LHC tracker upgrade.
 - Learned a lot about (rad-hard, high speed) microelectronics and detector design!
 - Lots of transferrable skills (both inside and outside academia).
 - Will next generation have similar opportunities?
- Muon collider: close coupling between accelerator and detector design (due to BIB):
 - Offers an opportunity to cross-train collider physicists in accelerator physics!
- **P5** ask: provide support for future collider R&D:
 - Consider these issues when planning for the future, to help make the case for future facilities!
 - Support muon collider R&D: physics case is strong, other significant positive impacts!

