Oblique corrections, when $m_W
eq \cos \theta_W m_Z$ (based on 2305.14050)

Vytautas Dūdėnas¹, Simonas Draukšas¹, Luis Lavoura²

¹Institute of Theoretical Physics and Astronomy, Physics Faculty, Vilnius University ²Lisbon Technical University

October 9, 2023

- Electroweak sector in the SM is highly predictive:
 - given 3 measured input values e.g. (G_F, α, m_Z) , SM predicts all the rest of the electroweak observables (Z decays, sin $\theta_W^{\text{effective}}$, ρ_* , LR, FB assymetries....)
- Consider Beyond Standard model (BSM), with these assumptions
 - Only $SU(2) \times U(1)$ gauge fields (only the SM-like)
 - Tree level relation $m_W = \cos \theta_W m_Z$ holds
- **Oblique** parameters, $S, T, U \in \mathbb{R}$, paremeterize the difference between the SM prediction for the observable O_{SM} and the BSM prediction O_{BSM} [Peskin 1992]:

$$O_{BSM} = O_{SM} (1 + a_1 S + a_2 T + a_3 U),$$

where coefficients $a_i \in \mathbb{R}$ are calculated for each observable.

SM at tree-level

• Weinberg angle

$$s \equiv \sin heta_W, \quad c \equiv \cos heta_W$$

 $A_\mu = cB_\mu + sW^3_\mu, \quad Z_\mu = cW^3_\mu - sB_\mu$

- We will label all tree-level parameters with hats.
- Fermi constant can be measured from $\mu
 ightarrow e
 u
 u$ decay:

• Analogously (in principle), $vv \rightarrow vv$:

$$\widehat{G}_{F(neutral)} = \frac{\sqrt{2}\widehat{e}^2}{8\widehat{s}^2\widehat{c}^2\widehat{m}_Z^2} \quad \Leftrightarrow \quad$$

• Veltmann ρ parameter at tree-level:

$$\widehat{\rho} = \frac{\widehat{G}_{F(neutral)}}{\widehat{G}_{F(charged)}} = \frac{\widehat{m}_W^2}{\widehat{c}^2 \widehat{m}_Z^2}$$

- SM scalar potential has custodial SU(2) symmetry, which implies $\widehat{
 ho} = 1$.
- Veltmann ρ gets corrections at higher orders:

$$ho \equiv rac{m_W^2}{c^2 m_Z^2} = \widehat{
ho} \left(1 + ext{loops}
ight),$$

• Define "rho-star" parameter

$$ho_{*}\equivrac{G_{F(neutral)}}{G_{F(charged)}}=\widehat{
ho}\left(1+(ext{other}) ext{ loops}
ight)$$

- In general $ho
 eq
 ho_*$.
- $\bullet~\rho$ definition depends on which 3 EW observables one takes as an input.
- Both equations are **predictions**, when $\widehat{\rho} = 1$.

ho_* corrections

• At one-loop Fermi constant gets both "**oblique**" (i.e. via gauge boson propagator only) corrections, and "direct" (via triangle an box diagrams):

$$G_{F(charged)} = \widehat{G}_{F(charged)} \left(1 - \frac{\prod_{WW}(0)}{m_{W}^{2}} + \Delta + \Box \right)$$

$$\stackrel{\nu_{\mu}}{\xrightarrow{\nu_{\nu}}} = \stackrel{\nu_{\mu}}{\xrightarrow{\nu_{\nu}}} \stackrel{w_{\nu}}{\xrightarrow{\nu_{\nu}}} + \stackrel{\nu_{\mu}}{\xrightarrow{\nu_{\mu}}} \stackrel{w_{\nu}}{\xrightarrow{\nu_{\nu}}} + \stackrel{w_{\nu}}{\xrightarrow{\nu_{\nu}}} \stackrel{w_{\nu}}{\xrightarrow{\nu_{\nu}}} \dots$$

 $\triangle + \Box$ are triangle and box diagrams (direct corrections). They will be neglected in the end. • Use the corrected G_F expressions:

$$\rho_* = \frac{G_{F(neutral)}}{G_{F(charged)}} = \frac{\widehat{G}_{F(neutral)} \left(1 - \frac{\Pi_{ZZ}(0)}{m_Z^2} + \bigtriangleup + \Box\right)}{\widehat{G}_{F(charged)} \left(1 - \frac{\Pi_{WW}(0)}{m_W^2} + \bigtriangleup + \Box\right)}$$
$$= \widehat{\rho} \left(1 + \frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} + O(2 \text{ loops}) + \bigtriangleup + \Box\right)$$

- In SM $\hat{\rho} = 1$, then $(\rho_*)_{SM}$ is calculated as prediction from (G_F, α, m_Z) and finite loop corrections
- When $\hat{\rho}$ is a free parameter, ρ_* is **not** predicted from (G_F, α, m_Z) , since ρ_* depends on $\hat{\rho}$
 - \Rightarrow loop corrections are **not** finite
 - \Rightarrow one needs additional input parameter to fix $\widehat{\rho}$ (i.e. renormalize ρ parameter).

 ho_* corrections, when $\widehat{
ho}=1$, and T

$$\rho_* = \widehat{\rho} \left(1 + \frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} + \triangle + \Box \right)$$
(1)

- Consider that we have two predictions: SM prediction $(\rho_*)_{SM}$ and BSM prediction $(\rho_*)_{BSM}$.
- If BSM has custodial symmetry, $\widehat{\rho} = 1$, both $(\rho_*)_{SM}$ and $(\rho_*)_{BSM}$ can be calculated from (1).
- Divide one from the other, neglect $\triangle + \Box$ (BSM contribution is small [Kennedy&Lynn1989, Peskin1992]) and O(2 loops):

$$\frac{(\rho_*)_{BSM}}{(\rho_*)_{SM}} = \underbrace{\frac{\widehat{\rho}_{BSM}}{\widehat{\rho}_{SM}}}_{=1} \left(1 + \frac{\Pi_{WW}^{new}(0)}{m_W^2} - \frac{\Pi_{ZZ}^{new}(0)}{m_Z^2}\right) \equiv 1 + \alpha T,$$

in which $\Pi^{new} = \Pi^{BSM} - \Pi^{SM}$, i.e. **only** BSM contribution to self-energies

• *T* is **oblique** parameter.

• Most often used definitions for oblique parameters ($\widetilde{\Pi}(m^2) \equiv \frac{\Pi(m^2) - \Pi(0)}{m^2}$):

$$\begin{split} S &= \frac{4s^2c^2}{\alpha} \left[\widetilde{\Pi}_{ZZ} \left(m_Z^2 \right) + \frac{s^2 - c^2}{sc} \Pi'_{ZA}(0) - \Pi'_{AA}(0) \right], \\ T &= \frac{1}{\alpha} \left[\frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} \right], \\ U &= \frac{4s^2}{\alpha} \left[\widetilde{\Pi}_{WW} \left(m_W^2 \right) - c^2 \widetilde{\Pi}_{ZZ} \left(m_Z^2 \right) - 2sc \Pi'_{ZA}(0) - s^2 \Pi'_{AA}(0) \right]. \end{split}$$

ho and $heta_W$ definitions

- In the same way we can derive oblique corrections for $\rho = \frac{m_W^2}{c^2 m_{\pi}^2}$.
- When $\widehat{
 ho}=1$, we choose input: $\left({\it G}_{F(charged)},\,lpha=rac{e^2}{4\pi},m_W
 ight)$
- Then "observed" c^2 is expressed in terms of input by promoting tree-level expression at all loops:

$$\widehat{G}_{F(charged)} = \frac{\sqrt{2}\widehat{e}^2}{8\widehat{s}^2\widehat{m}_W^2} \longrightarrow 1 - c^2 \equiv \frac{\pi\alpha}{\sqrt{2}G_{F(charged)}m_W^2}$$

• We can also choose $(G_{F(charged)}, \alpha, m_Z)_{[Peskin1992]}$, then (using $\widehat{m}_W = \widehat{c}\widehat{m}_Z!$) we define:

$$\widehat{G}_{F(charged)} = \frac{\sqrt{2}\widehat{e}^2}{8\widehat{s}^2\widehat{c}^2\widehat{m}_Z^2} \longrightarrow \overline{c}^2\left(1 - \overline{c}^2\right) \equiv \frac{\pi\alpha}{\sqrt{2}G_{F(charged)}m_Z^2}$$

• c and \bar{c} differs at one-loop by definition and thus ρ is different from $\bar{\rho}$!

ho and $ar{ ho}$

• Let us calculate $ho = rac{m_W^2}{c^2 m_Z^2}$ ($T^{\rm full}$, means all oblique corrections of a model).

$$\begin{split} \rho &= \frac{m_W^2}{c^2 m_Z^2} = \frac{\widehat{m}_W^2 + \delta m_W^2}{(\widehat{c}^2 + \delta c^2) \left(\widehat{m}_Z + \delta m_Z^2\right)} &= \widehat{\rho} \left(1 + \alpha T^{\mathsf{full}} - \alpha K^{\mathsf{full}} + \triangle + \Box\right) \\ \bar{\rho} &= \frac{m_W^2}{c^2 m_Z^2} = \frac{\widehat{m}_W^2 + \delta m_W^2}{(\widehat{c}^2 + \delta \overline{c}^2) \left(\widehat{m}_Z + \delta m_Z^2\right)} &= \widehat{\rho} \left(1 + \frac{\overline{c}^2}{\overline{c}^2 - \overline{s}^2} \left[\alpha T^{\mathsf{full}} - \alpha K^{\mathsf{full}}\right] + \dots\right) \\ K &\equiv \frac{1}{2c^2} S + \frac{s^2 - c^2}{4s^2 c^2} U \end{split}$$

• SM vs. BSM predictions (when $\widehat{
ho}=1$):

$$\begin{split} \rho_{BSM} &= \rho_{SM} \left(1 + \alpha T - \alpha K \right), & \text{when input is } \left(G_{F(charged)}, \alpha, m_W \right) \\ \bar{\rho}_{BSM} &= \bar{\rho}_{SM} \left(1 + \frac{\bar{c}^2}{\bar{c}^2 - \bar{s}^2} \left[\alpha T - \alpha K \right] \right), & \text{when input is } \left(G_{F(charged)}, \alpha, m_Z \right) \end{split}$$

when $\widehat{ ho} eq 1$

- Consider we have a **base model** BM with a more complex scalar potential giving unfixed $\hat{\rho} \neq 1$, and some **beyond base model** BBM (also with $\hat{\rho} \neq 1$).
- Then

$$\widehat{G}_{F(charged)} = \frac{\sqrt{2}\widehat{e}^2}{8\widehat{s}^2\widehat{m}_W^2} \neq \frac{\sqrt{2}\widehat{e}^2}{8\widehat{s}^2\widehat{c}^2\widehat{m}_Z^2} = \widehat{G}_{F(neutral)}$$

and so (Peskin used, when $\widehat{
ho}=1)$ $ar{
ho}$, $ar{c}$ definitions cannot be used!

Equation

$$ho = \widehat{
ho} \left(1 + lpha \, T^{\mathsf{full}} - lpha \, \mathcal{K}^{\mathsf{full}} + riangle + riangle
ight)$$

not a prediction neither in BM nor BBM, when $\hat{\rho} \neq 1 \Rightarrow$ need additional input. • input $(G_{F(charged)}, \alpha, m_W, m_Z)$ gives by definition:

$$\frac{m_W^2}{c^2 m_Z^2} = \frac{m_W^2}{\left[1 - \frac{\pi \alpha}{\sqrt{2}G_{F(charged)}m_W^2}\right]m_Z^2} = \rho_{BM} = \rho_{BBM} \quad \Rightarrow \quad \frac{\widehat{\rho}_{BBM}}{\widehat{\rho}_{BM}} = (1 - \alpha T + \alpha K)$$

BM vs. BBM

• Previously we derived

$$\frac{(\rho_*)_{BSM}}{(\rho_*)_{SM}} = \frac{\widehat{\rho}_{BSM}}{\widehat{\rho}_{SM}} (1 + \alpha T) = (1 + \alpha T)$$

since $\widehat{
ho}_{BSM}=\widehat{
ho}_{SM}=1.$

• Using the first equation, and $BSM \rightarrow BBM$ ir $BM \rightarrow SM$, plug $\frac{\hat{\rho}_{BBM}}{\hat{\rho}_{BM}} = (1 - \alpha T + \alpha K)$ we get:

$$rac{(
ho_*)_{BBM}}{(
ho_*)_{BM}}=(1+lpha {\cal K})$$

Result: when $\hat{\rho} \neq 1$, we use as input $(G_{F(charged)}, \alpha, m_W, m_Z)$ in both BM and BBM, then we can use same expressions as SM/BSM [Peskin1992, Maksymyk1994] with a substitution:

$$T \to K = \frac{1}{2c^2}S + \frac{s^2 - c^2}{4s^2c^2}U$$

12/14

- One needs different number of input parameters (4 and 3).
- Since $m_W^{SM} \neq m_W^{BBM}$ gauge sector does not cancel in the same way, i.e.:

 $\Box^{BBM} + \triangle^{BBM} - \Box^{SM} - \triangle^{SM} = \text{Gauge dependent} \Leftrightarrow \Pi^{BBM} - \Pi^{SM} = \text{Gauge dependent}$

 \Rightarrow oblique parameters are gauge dependent tested for S, U parameters in triplet extensions of SM.

• checks of [Kennedy&Lynn1989] which shows $\Box + \triangle$ being negligible does not apply.

Summary

• When $\hat{\rho} = 1$ in both SM and BSM, well known expressions exist with input $(G_{F(charged)}, \alpha, m_Z)$ [Peskin 1992]:

$$O_{BSM} = O_{SM} (1 + a_1 S + a_2 T + a_3 U)$$

• When $\hat{\rho} \neq 1$ in two models(BM and BBM), we can compare their predictions with the same equations with a substutution $T \rightarrow K$ and input parameters $(G_{F(charged)}, \alpha, m_Z, m_W)$

$$O_{BBM} = O_{BM} \left(1 + a_1 S + a_2 \left[\frac{1}{2c^2} S + \frac{s^2 - c^2}{4s^2c^2} U \right] + a_3 U \right),$$

Not yet clear: how to compare SM(p̂ = 1) with BBM(p̂ ≠ 1):
 ⇒I would be careful, interpeting studies of (p̂ ≠ 1) models with oblique parameters (as they use formalism, which is derived for p̂ = 1 only)...

Thank you!

(日)

Thanks

• STUVWX parameters

$$\begin{split} S &= \frac{4s^2c^2}{\alpha} \left[\widetilde{\Pi}_{ZZ} \left(m_Z^2 \right) + \frac{s^2 - c^2}{sc} \Pi'_{ZA}(0) - \Pi'_{AA}(0) \right] \\ T &= \frac{1}{\alpha} \left[\frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} \right] \\ U &= \frac{4s^2}{\alpha} \left[\widetilde{\Pi}_{WW} \left(m_W^2 \right) - c^2 \widetilde{\Pi}_{ZZ} \left(m_Z^2 \right) - 2sc \Pi'_{ZA}(0) - s^2 \Pi'_{AA}(0) \right] \\ V &= \frac{1}{\alpha} \left[\Pi'_{ZZ} \left(m_Z^2 \right) - \widetilde{\Pi}_{ZZ} \left(m_Z^2 \right) \right] \\ W &= \frac{1}{\alpha} \left[\Pi'_{WW} \left(m_W^2 \right) - \widetilde{\Pi}_{WW} \left(m_W^2 \right) \right] , \\ X &= \frac{1}{\alpha} \left[\Pi'_{ZA}(0) - \widetilde{\Pi}_{ZA} \left(m_Z^2 \right) \right] \end{split}$$