CMS Phase-2 Inner Tracker Pixel Chip Prototype Tests

Marijus Ambrozas, on behalf of the CMS Tracker group

Faculty of Physics, Vilnius University

marijus.ambrozas@cern.ch

Fizikos fakultetas

CERN Baltic Conference 2023, Riga 2023-10-10

HL-LHC upgrade

- The High Luminosity LHC is expected to launch at 2029
- Great discovery potential improvement:
 - Proton-proton collision energy: 14 TeV

- Peak instantaneous luminosity: LHC nominal 1×10^{34} cm⁻²s⁻¹ \rightarrow LHC current $\sim 2.1 \times 10^{34}$ cm⁻²s⁻¹ \rightarrow HL-LHC 7.5×10³⁴ cm⁻²s⁻¹
- Integrated luminosity: LHC nominal ~ 300 fb⁻¹ \rightarrow HL-LHC ~ 3000 fb⁻¹ over 10 years
- Average pile-up: LHC nominal $25 \rightarrow$ LHC current ~60 \rightarrow HL-LHC 200

Detector requirements for HL-LHC

HUNDERSTREET, BURNERSTREET, BURNERSTREET, BURNERS, BURNER

- More collisions will also bring challenges:
 - ~3× more tracks than currently
 - \rightarrow higher trigger rates
 - \rightarrow higher data rates
 - \rightarrow harder to separate tracks
 - \rightarrow bigger radiation doses (up to 1.2 Grad)
- Requirements for the Phase-2 CMS tracker:
 - High granularity
 - High radiation tolerance
 - Contribution to level-1 trigger
 - Extended acceptance range
 - Reduced material budget
- This makes the current CMS tracker not suitable for operation after the HL-LHC upgrade
 - A completely new tracker is in preparation

M. Ambrozas

CBC 2023

3

Current CMS tracker

M. Ambrozas

Phase-2 CMS tracker upgrade

NIVERSITETAS SIGNAL

- Both CMS Inner and Outer Tracker systems will be completely replaced
- Phase-2 Outer Tracker:
 - 6 barrel layers and 5 endcap disks per side
 - Micro-strip and macro-pixel silicon sensors
 - Contribution to the L1 trigger
- Phase-2 Inner Tracker:
 - 4 barrel layers and 12 endcap/forward disks (instead of the current 3 disks)
 - 25×100 µm² silicon pixel sensors with both 3D and planar technologies
 - Tracking acceptance: up to $|\eta| = 4.0$ (instead of the current $|\eta| < 3.0$)

M. Ambrozas

Phase-2 Inner Tracker

- 25×100 µm²
- 150 µm active thickness
- Total active surface area ~4.9 m²
- Total pixel count ~2 billion
- Two different pixel technologies
 - 3D pixel sensors on barrel layer 1
 - n-in-p planar sensors everywhere else
- A readout chip based on 64 nm CMOS technology is developed by RD53 collaboration
 - RD53 is developing chips for both CMS and ATLAS with different features

The CMS ReadOut Chip

- Features of the chip under development:
 - Able to withstand the radiation up to 1 Grad
 - Low power consumption of < 1 W/cm²
 - Compatible with serial powering by using on-chip shunt-LDO regulators
- Pre-production prototypes (RD53B) are undergoing many different tests
- The RD53B version for CMS is called CMS ReadOut Chip – CROC_v1
 - 432×336 channels
 - Bump-bonded to the sensor
 - Wire-bonded to the readout
 - Linear analog front-end architecture
 - 4-bit digital readout for signal strength (ToT)
 - Single- or double-slope operation possible

CBC 2023

Test setup

Our test setup for CROC chips consists of:

- Custom-made equipment:
 - CROC chip with sensor mounted on a Single Chip Card (SCC)
 - Electrical readout FMC board connected to SCC via DP connection
 - FC7 board with FPGA and 2 FMC connectors
- Standard equipment:
 - DIO5 FMC board (provides external trigger, clock, etc.)
 - Low and high voltage supply
 - Computer connected to the FC7 via IPbus
 - IPbus is a protocol used to communicate between software and firmware via ethernet (<u>https://ipbus.web.cern.ch/</u>)
 - Computer runs the <u>Ph2-ACF</u> software which is designed to perform both Inner and Outer Tracker hardware tests

Hit detection threshold tuning

- A hit is registered once the voltage from the preamplifier surpasses the voltage threshold
- Threshold can be tuned globally but varies from pixel-to-pixel due to transistor mismatch
- Each pixel has a dedicated trimming DAC (TDAC, 5 bits) to reduce the threshold variation betwen pixels
 - The trimming DAC strength is controlled by a global DAC (called LDAC_LIN)

- The threshold CROC chip can be successfully tuned with a threshold spread of only ~50 e⁻ between the pixels
 - This is 2× better than the RD53A demonstrator chip
- The threshold spread stays stable after global threshold shift
 - Relevant for real experiment conditions
- This was confirmed with multiple chips

M. Ambrozas

CBC 2023

ToT gain tuning

UNIVERSITAS SIS

- The signal strength is measured by the time the preamplifier output voltage stays above the comparator threshold
 - Time Over Threshold (ToT) is measured in 25 ns intervals
 - 4 bits, single or dual slope modes available
- Preamplifier feedback ("Krummenacher") current can be tuned to obtain different ToT gain curves
 - Enables choosing a sweetspot for signal resolution and dynamic range
- ToT gain slope has non-linearities for signal values close to the threshold and becomes linear at higher signal strength
- ToT gain slope does not depend on the threshold itself, as expected with the linear analog front-end

Hit detection threshold unit calibration

- Threshold is measured using a calibration circuit
- Calibration pulse strength is controlled by DAC units (ΔVCal)
- We have used the internal voltage multiplexer to measure the physical ΔVCal value
- The resultant ΔVCal value corresponds ~5 e⁻ of signal, confirmed with multiple chips
- The threshold unit value of ~5 e⁻ was also confirmed by using ²⁴¹Am x-ray source
 - X-rays are monochromatic (59.54 keV) and always release the same amount of signal in the sensor (16268 e⁻)

M. Ambrozas

CBC 2023

Row

50

100

150

200

250

300

11

- The HL-LHC upgrade comes in 2029 and brings a big challenge for detector builders but provides big physics opportunities
- The Phase-2 detectors must have higher resolution, higher data output rates, and higher radiation tolerance than the current ones
- A completely new tracker is in preparation prepared for CMS
- Pixel detector chips for the Inner Tracker are developed by the CERN/RD53 collaboration
- Pre-production chips CROC_v1, are still tested extensively and show good performance

Thank you!

Backup

Particle fluence in 1 MeV neutron equivalent

Integrated particle fluence in 1MeV neutron equivalent per cm2, for the Phase-2 tracker. The estimates shown correspond to a total integrated luminosity of 3000 fb⁻¹ of pp collisions at 14 TeV.

Outer Tracker contribution to L1 trigger

Figure 2.5: Illustration of the p_T module concept. (a) Correlation of signals in closely-spaced sensors enables rejection of low- p_T particles; the channels shown in green represent the selection window to define an accepted stub. (b) The same transverse momentum corresponds to a larger distance between the two signals at large radii for a given sensor spacing. (c) For the end-cap discs, a larger spacing between the sensors is needed to achieve the same discriminating power as in the barrel at the same radius.