

Participation in Accelerator Projects

Andris Ratkus

Accelerator Technology Group Leader

11.10.2023

Accelerator Technology Team

Institute of Particle Physics and Accelerator Technologies

Accelerator Technology Team

- Prof. Toms Torims
- Guntis Pikurs PhD student
- Dr. Andris Ratkus
- Luca Piacentini PhD student*
- Lazar Nikitović PhD student*
- Kristaps Palskis PhD student*
- Tobia Romano (PoliMi/ RTU) PhD student*
- Vincenzo Alberto Sansipersico PhD student*
- Aurēlija Viņķe Bachelor student
- Dairis Rihards Irbe Bachelor student

* RTU/UL Particle Physics and Accelerator Technologies study programme

Accelerator Technology Team

Graduates

– Ekaterina Tskhay MSc student 2021

– Dagnija Kroģere MSc student 2022

Viesturs Lācis

MSc student

2023

Accelerator projects

Innovation Fostering in Accelerator Science and Technology (I.FAST)

- WP1: Management, coordination and dissemination
 - Task 1.2: Information Flow Management and Cross-coordination (Task Leader RTU)
- WP10: Advanced Accelerator Technologies (Coordinator RTU)
 - Task 10.1: Coordination and Communication (Task Leader RTU)
 - Task 10.2: Additive Manufacturing Survey of applications and potential developments
 - Task 10.3: Refurbishment of accelerator components by AM technologies (Task Leader RTU)
- WP12: Societal Applications
 - Task 12.1 sub task 3: Environmental applications of electron beam

Innovation Fostering in Accelerator Science and Technology (I.FAST)

- WP1: Management, coordination and dissemination
 - Task 1.2: Information Flow Management and Cross-coordination (Task Leader RTU)
- WP10: Advanced Accelerator Technologies (Coordinator RTU)
 - Task 10.1: Coordination and Communication (Task Leader RTU)
 - Task 10.2: Additive Manufacturing Survey of applications and potential developments
 - Task 10.3: Refurbishment of accelerator components by AM technologies (Task Leader RTU)
- WP12: Societal Applications
 - Task 12.1 sub task 3: Environmental applications of electron beam

Student theses

Guntis Pikurs PhD thesis: Follow his talk @11:30 (link)

Research on performance improvement of accelerator and detector components by additive manufacturing

Tobia Romano PhD thesis:

Investigation on the sintering behaviour of pure copper processed via additive manufacturing

Dagnija Krogere MSc thesis (Defended):

Research of additive manufacturing applications and strategies for repairing particle accelerator components

Viesturs Lacis MSc thesis (Defended): Was @poster Session

Laser Polishing of Additively Manufactured RFQ Prototype

Follow his talk @12:15 (link)

CERN 📀 ovember 5 at 6:12 PM · 🚱 Guess what this is 🙉 We will reveal the answer on Monday in the comments section

- Task 10.3 Deliverable was submitted and approved Reported about:
 - AM state of the art in the accelerator community
 - Possible AM repair strategies for accelerators

IFAST

I.FAST

Innovation Fostering in Accelerator Science and Technology Horizon 2020 Research Infrastructures GA n° 101004730

DELIVERABLE REPORT

Survey of AM applications and strategies for repairing components by AM

DELIVERABLE: D10.2

- Task 10.3 Deliverable was submitted and approved Reported about:
 - AM state of the art in the accelerator community
 - Possible AM repair strategies for accelerators
 - Case study: Ta cathodes repair by two AM technologies

I.FAST Innovation Fostering in Accelerator Science and Technology Horizon 2020 Research Infrastructures GA n° 101004730

DELIVERABLE REPORT

Survey of AM applications and strategies for repairing components by AM

DELIVERABLE: D10.2

Hardness: 315.3 ± 10.3 HV_{0.05}

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

1/4 RFQ L= 95 mm

PPAT

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

PPAT

L= 250 mm

L= 250 mm

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

PPAT

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

IFAST

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

Pure Cu (Cu-ETP) RFQ prototypes manufactured by AM

Accelerator projects

Heavy Ion Therapy Research Integration

- WP 7: Advanced accelerator and gantry design
 - Task 7.4: Injector Linac Design
 - Task 7.5: Integration of an innovative superconducting gantry: optics, mechanics, beam delivery

Courtesy: M. Vretenar

Heavy Ion Therapy Research Integration

HITB

Student theses

Lazar Nikitovics PhD thesis: Was @poster Session

Design study of a high-frequency linear accelerator for the purposes of injection into a therapy synchrotron and parallel production radioisotopes

Luca Piacentini PhD thesis: Was @poster Session

Mechanical integration of systems, instruments and components of a carbon ion rotating gantry for medical treatments

Dairis Rihards Irbe Bachelor thesis:

Designing of gantry mechanical components

Courtesy: L. Piacentini

1 Posters

2 Publications

IPAC'23 Proceedings: https://www.ipac23.org/preproc/index.html

MDPI Journal Machines: https://www.mdpi.com/2075-1702/11/10/929

HITRI*plus* **Deliverables**:

- Task 7.4 (submitted)
- Task 7.5 (work in progress)

14th International Particle Accelerator Conference

PAC 23 7-12 May 2023 | Venice Italy

COMPARISON OF 352 MHz LINAC STRUCTURES FOR INJECTION INTO AN ION THERAPY ACCELERATOR L. Nikitovic ^{1, 2}, T. Torims ¹, M. Vretenar ² ¹Riga Technical University, Riga, Latvia ²CERN, Geneva, Switzerland

RESULTS

11	[Debuncher To	a synchrotron
	Section 1 Sec. 2 Sections 2 and 3 are po	sec. 3 To pro	e radioisctope souction target
nA, 45 kV	LINAC sec. 1: • A/q = 3 • W _a = 15 keV/u	LINAC sec. 2: • A/q = 2 • W _m = 5 MeV/a	LINAC sec. 3: • A/q = 2 or 1 • W _m = 7.1 MeV/u

perational costs of accelerators - hence more affordable to d beam optics with high transmission and optimum beam achieving better performance for cancer treatment.

on Sources:	LINAC sec. 1:	LINAC sec. 2:	LINAC sec. 3:
⁴⁴ , 0.6 mA, 45 kV 5 mmm-mrad r ²⁺ , 0.5 mA,	• A/q = 3 • W _{in} = 15 keV/u • W _{out} = 5 MeV/u	• A/q = 2 • W _{in} = 5 MeV/u • W _{cel} = 7.1 MeV/u	• A/g = 2 or 1 • W _{in} = 7.1 MeV/u • W _{out} = 10 MeV/u
or ² H ⁺ , 5 mA,	Baseline: 217 MHz Alternative: 352 MHz		

CA-DTL
PROS: CONS:
Higher effective shurt impedance
in comparison to a standard DTL;
Strong beam Cousing in n
transversal plane;
Nystron can be used as RF power
source, at a lower cost per wat
than a solid state amplifier.

S-IH-DTL

Clean FODD beam optics, without
 Plipher power dissipation in
 comparison to a conventiona
 o Optimised effective shurt impoda nee - different radius for every tank;
 Oldrent focus gystems can be
 used (e.g. doublets and triplets);

 Hoffber power dissipation in comparison to a conventional H+DTL:

been designed as the second and third tank of HITRIPIUs LINAC

HITR

		CONCE				
TL	DTL		WHICH LINAC STRUCTURE IS THE "BEST"?			
ets)	Cav.1	Cav.2	OA-DTL designed as the first tank of HITBIOUS LINAC has shown to	H		
	He ²⁺	H*	be a good alternative to conventional IH-DTL for acceleration of C ⁴⁺ id Standard Alternative as the second and third tank of	ons;		
	1.5	1.1	HITRIPIUS LINAC, indicated to be a good choice for acceleration of H	n of H*		
	181	147	S-IH-DTL showed to be a viable option for			
	5	7	Acceleration of C4+ ions, but not as effective as OA-DTL in terms of both production and	2		
	7	10	operational costs.	-		

20

Courtesy: L. Nikitovic

HITRIplus Annual meeting and Workshop

26 – 28 June 2023

Riga Technical university, Latvia Domus auditorialis, Zunda krastmala 8, Riga 107. auditorium, 1st floor

https://indico.cern.ch/event/1246177/

RIGA TECHNICAL UNIVERSITY

Ţ

- Wednesday 28 Jun 2023, 10:00 → 15:45 Europe/Riga
- Pomus auditorialis, Zunda krastmala 8

https://indico.cern.ch/event/1256528/

Accelerator projects

Next Ion Medical Machine Study

nimms

 Developing new technologies for the future generation of accelerators for cancer therapy

Student theses

- Kristaps Palskis PhD thesis: Studies of different ion types and their use for radiation therapy, *FLASH* therapy aspects. Optimization of ion beam parameters for very high dose rate (FLASH) radiotherapy
 Presented @9:55 (link)
- Vincenzo Alberto Sansipersico PhD thesis: Optimization and Integration of a ⁴He²⁺ Synchrotron for Cancer Therapy
- Aurēlija Viņķe Bachelour thesis: Studies of proton radiography

2 Posters

1 Publications

10 - 16 June 61st Annual PTCOG Conference Centro de Clínica SEOR SEFM ESPAÑOLA DE Universidad Protonterapia de Navarra

PARTICLE LET 3D DISTRIBUTION

ASSESSING PARTICLE FLASH-RT EFFECTIVENESS BY MODELLING SOLVATE ELECTRON PRODUCTION DEPENDENCY ON PARTICLE LET K. Palskis^{1,2}, M. Vretenar², T. Torims¹, M. Sapinski³, J. Seco⁴

¹Riga Technical University, Riga, Latvia ²CERN, Geneva, Switzerland ³SEEIIST, Geneva, Switzerland ⁴DKFZ, Heidelberg, Germany

K. Palskis^{1,2}, M. Sapinski³, T. Torims¹, M. Vretenar², J. Seco⁴ Riga Technical University, Riga BACKGROUND AIMS OF THE STUDY FLASH-RT - growing clinical interest and emerging technological Investigate FLASH effect dose threshold for 12 different ion types · Off-axis dependency of the dose threshold - spatial variations developments for delivery · Majority of experimental evidence - electron, photon and proton beams Impact of SOBP geometry and FLASH prescription point "What would be the most efficient ion for FLASH-RT? Investigations of heavy ion FLASH-RT feasibility - necessary METHODS Dose threshold model SOBP optimization •Experimental data [1] [2] - reduced 0, consump and eventual saturation at FLASH dose rates Bio-effective dose driven SOBP opt or cube-shaped tumors with size of 25 ·Saturation of solvated electron (e'...) 0. 75 and 100 mm at depths of 15 and 30 cr straint - critical threshold e... concentration at concentration - saturation of O. consu the FLASH prescription point reached Square fields of 25, 50, 75 and 100 mm size Model assumption ion = FLASH effect of threshold \otimes = $[e_{aq}] = C \times G_{e_{aq}} \times D_{phys} \left| \frac{mon}{1} \right|$ Threshold value - fit to experimental data ET calculation - dose-weighing used MC data collection for energies of R_{water} = 5-15 and 20-30 cm •1H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁶O, ² Central plane distribution extracted for analysis e-optimized with 3 different FLASH prescription ·Scoring: physical dose, fluence, LET and Eko by oints: surface (5 mm depth), mid-point of plate RESULTS •With increasing number of the ion. "FLAS physical dose neccessary for threshold" region shrinks FLASH effect linearly increases with the atomic number of the particle, also the bio-effective laterally for heavier ions di Scan for more results! CONCLUSIONS Prescription poir FLASH dose threshold modelling framework has been established by using produced e concentration and dependency on LET as surrogate
 Oue to e distribution, FLASH conditions would be reached in larger volumes For light ions: FLAS rescription point closer t with lighter ions. e ag concentration is lost at large off-axis distances for heavy nor volume decreases th io-effective dose at tumor

lelivered to reach FLAS

N VPP

• dkfz

For further information

kristaps.palskis@cern.ch

FLASH-RT DOSE THRESHOLD EFFECT ESTIMATION FOR PARTICLE BEAM BY MODELLING SOLVATE ELECTRON PRODUCTION DEPENDENCY ON

Courtesv: K. Palskis

Madrid, Spain

Gause Mauiron

2023

Other activities

Primarily concerned with two Additive Manufacturing (AM) technologies

Primarily concerned with two Additive Manufacturing (AM) technologies

Primarily concerned with two Additive Manufacturing (AM) technologies

SR Absorber to be laser welded along outer profile

L= 350 mm

Primarily concerned with two Additive Manufacturing (AM) technologies

SR Absorber to be laser welded along outer profile

L= 350 mm

(L-PBF)

TE-VSC

MInternational UON Collider Collaboration

(AM) technologies

The Memorandum of Understanding has been signed by RTU

R Absorber to be laser welded along outer profile

_= 350 mm

CERN Summer Student Programm

CERN Summer Student Programm O

Student: Kristupa Seskauskaite (KTU) tasks:

- AM component and surface characterisation
- Measurements
- Design evaluation
- Continuation with Bachelor thesis

SR Absorber test sample (95 mm)

FUTURE CIRCULAR COLLIDER **CERN Summer Student Programm**

Was @poster Session

Student: Kristupa Seskauskaite (KTU) tasks:

- AM component and surface characterisation
- **Measurements**
- **Design evaluation**
- **Continuation with Bachelor thesis**

SR Absorber test sample (95 mm)

Courtesy: K. Seskauskaite Sample ID = Sample_side_2_

		[1-3]	[4]
Yield strength, MPa	100	204-361	69-360
Young's modulus, GPa	137,6	114	115
Hardness, HV	71,2-73,8	88,185	51-127
Density, %	96-99	90-99	100
Roughness, um	18,01	8-18	N/A

CERN Summer Student Programm

Student: Dairis Irbe (RTU) tasks:

- Design of support structure for nozzle components
- Evaluation of design
- Continuation with Bachelor thesis

CERN Summer Student Programm

Ansys 2023 R1

STUDENT

Was @poster Session

Student: Dairis Irbe (RTU) tasks:

- Design of support structure for nozzle components
- Evaluation of design
- Continuation with Bachelor thesis

Building the expertise in Accelerator Technologies

Courtesy: K. Palskis

Examination of AM for accelerator applications

Andris Ratkus

Accelerator Technology Group Leader

11.10.2023

AM Technology

Powder Bead Fusion

Schematic diagram of laser beam melting

*RFQ Requirements

*RFQ Requirements

Requirement	Target value
Geometrical accuracy	20 μ m on vane tip, 100 μ m elsewhere
Surface roughness	Ra = 0,4 μ m for all inner surfaces
Vacuum	10 ⁻⁷ mbar
Electrical conductivity	90% IACS
Peak electric field on surface	$\approx 40 \text{ MV/m}$

*RFQ Requirements

P (Torr)	λ	Regime
760	70 nm	Atmosphere
1	50 µm	Rough vacuum
10 -3	5 cm	Medium vacuum
<u>10-7</u>	500 m	High Vacuum
10 ⁻¹⁰	500 km	Ultra High Vacuum
10 -12	50,000 km	Extreme High Vacuum

Requirement	Target value
Geometrical accuracy	20 µm on vane tip, 100 µm elsewhere
Surface roughness	$Ra = 0,4 \ \mu m$ for all inner surfaces
Vacuum	10 ⁻⁷ mbar
Electrical conductivity	90% IACS
Peak electric field on surface	$\approx 40 \text{ MV/m}$

P (Torr)	λ	Regime
760	70 nm	Atmosphere
1	50 µm	Rough vacuum
10 ⁻³	5 cm	Medium vacuum
10 ⁻⁷	500 m	High Vacuum
10 -10	500 km	Ultra High Vacuum
10 ⁻¹²	50,000 km	Extreme High Vacuum

*RFQ Requirements

Ultra High Vacuum design for BIDs

First test for Ultra High Vacuum applications

The aim of this research is to find the minimum pure copper AM wall thickness limits applicable for UHV by using specially designed test membranes

First test for Ultra High Vacuum applications

The aim of this research is **to find the minimum pure copper AM wall thickness limits applicable for UHV** by using **specially designed test membranes**

First test for Ultra High Vacuum applications

The aim of this research is to find the minimum pure copper AM wall thickness limits applicable for UHV by using specially designed test membranes

Thanks to CERN TE-VSC and Cedric GARION

First test for Ultra High Vacuum applications

The aim of this research is to find the minimum pure copper AM wall thickness limits applicable for UHV by using specially designed test membranes

Results

The leak detector threshold value is set at **1·10⁻¹⁰mbar·l·s**⁻¹

Thickness Z (mm)	Angle/Result (mbar/l/s ⁻¹)		
	45°	67 °	90°
2.5	PASS	PASS	PASS
2	PASS	PASS	PASS
1.5	PASS	PASS	PASS
1	PASS	PASS	PASS
0.75	PASS	PASS	1·10-6
0.5	PASS	2.5·10-3	5·10-2

Thanks to CERN TE-VSC and Cedric GARION

CERN's pulsed high-voltage

CERN DIFAST

HV characteristics are related to surface roughness values and chosen material, therefore, the aim is to clarify AM pure copper **surfaces performances in as-built conditions**.

CERN's pulsed high-voltage

HV characteristics are related to surface roughness values and chosen material, therefore, the aim is to clarify AM pure copper **surfaces performances in as-built conditions**.

CERN's pulsed high-voltage

The Anode's test surface $R_a = 0.4 \mu m$ The Cathode's test surface $R_a \sim 10 \mu m$

CERN

Ra = 8.28 \pm 0.89 and 10.67 \pm 1.16 µm Rz = 42.10 \pm 5.33 and 52.76 \pm 7.56 µm (two perpendicular measurements)

IFAST

Initial results: Test 1 (Gap 270μ m)

Vacuum pumdown

Initial results: Test 1 (Gap $270\mu m$)

Vacuum pumdown

Test 1 reached a stable **26 MV/m** (equivalent to the system maximum voltage of 7 kV)

Thanks to CERN SY-RF team and Walter WUENSCH

Initial results: Test 2 (Gap 115μ m)

Gap reduction by remachining shoulder hight

The same preconditioned cathode and anode were used for test 2

Initial results: Test 2 (Gap 115μ m)

Vacuum pumdown

Initial results: Test 2 (Gap 115μ m)

Vacuum pumdown

Electrical Field reached a stable **50 MV/m**; (**40 MV/m** corresponds to the operating conditions of **the compact 750 MHz RFQ design of CERN**)

HV holding test

Further tests with: Smaller gap height – 60μm; HV Tests after surface post-processing;

•Test of built direction and laser source influence

Results

14th International Particle Accelerator Conference

3 Posters2 Publications

EVALUATION OF GREEN LASER SOURCE ADDITIVE MANUFACTURING TECHNOLOGY FOR ACCELERATOR APPLICATIONS WITH ULTRA-HIGH VACUUM REQUIREMENTS A Ratkus', T. Torims', G. Pikurs', V. Lacis', C. Garion', H. Kosa', S. Borison', S. Gruber', E. Lopez' L. Stepien A A Patif, M. Yedani'

ical University, Riga, Latvia; ²CERN, Geneva, Switzerland, ³Fraunhofer IWS, Dresden, Germany, ⁴Politecnico di I

Motivation and Objectives

AM applications with pure copper for accelerator component production potentially can offer several benefits such as design freedom, functionality improvements etc. Pure copper AM (green laser source) characterization under UHV requirements are needed. The aim of this research is to find the minimum pure copper AM wall thickness limits applicable for

UHV by using specially designed test membranes.

IPAC'23 Proceedings: https://www.ipac23.org/preproc/index.html

Thank you!