
Welcome to QTML

from the CERN QTI

Alberto Di Meglio CERN QTI Phase 1 Coordinator

CERN and Quantum Technologies

CERN QTI Phase 1

Main objectives

- Identify areas of knowledge and technology where CERN can make an impact on the development of quantum technologies
- Conduct a scientific investigation of the potential impact of quantum technology on CERN and related physics programmes implemented as a set of joint projects
- Align and collaborate with quantum initiatives in the CERN Member States to support the development of quantum capacity
- Facilitate the collaboration across the HEP community and between HEP and quantum technology experts outside HEP

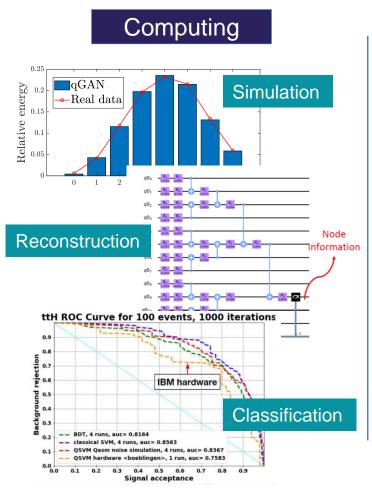
CERN QTI Strategy and Roadmap

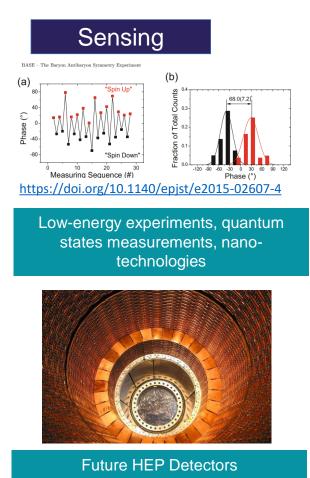
Developed at the beginning of the QTI Phase 1 with the CERN community and international experts. Reviewed and endorsed by the QTI AB Members and announced at the SPC and Council in September 2021. Formally published in September 2021 (https://zenodo.org/record/5846455#.ZFEwU4JBy4Q)

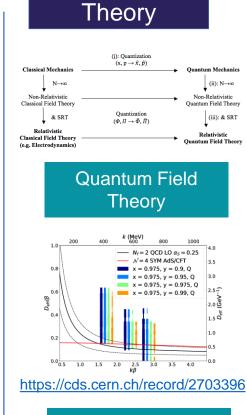
Four main high-level objectives covering science, technology, and collaboration, with detailed sub-goals

T1 - Scientific and Technical Development and Capacity Building

T3 - Community Building


T2 - Co-development

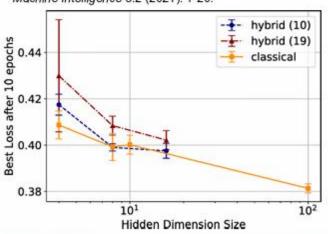

T4 - Integration with national and international initiatives and programmes


R&D Interests

Communications End User QRNG Key Managemen Node QKD Key Key Storage Storage Storage Node 3 Node 1 Node 2 QKD infrastructures

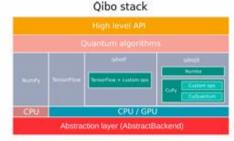
Quantum Internet

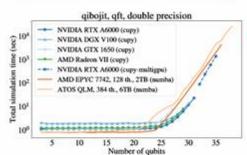
Lattice QCD

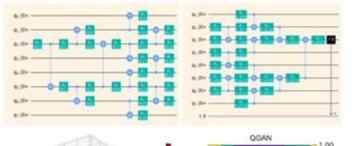


QC @ CERN

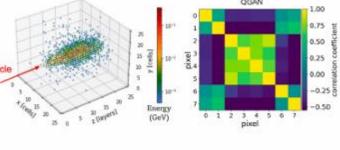
Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum Generative Adversarial Networks." arXiv preprint arXiv:2203.01007 (2022).

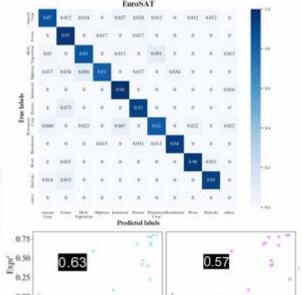

Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural networks for particle track reconstruction." Quantum Machine Intelligence 3.2 (2021): 1-20.



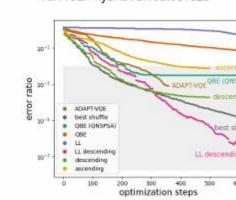

F.Rehm. Full Quantum GAN Model for HEP Detector Simulations, ACAT22

Generator: MERA-up


E.Stavros et all., Quantum simulation with just-in-time compilation, Quantum 2022

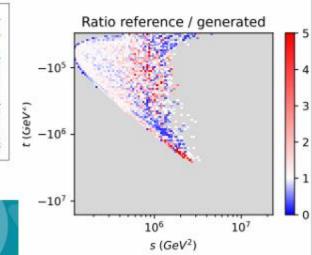


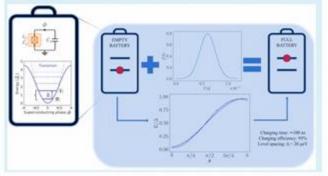
Discriminator: MERA-down



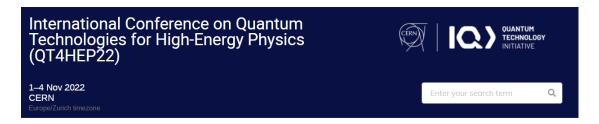
S.Chang, et all, Hybrid Quantum-Classical Networks for Reconstruction and Classification of Earth Observation Images, ACAT22

Training Accuracy


O. Kiss, Quantum computing of the 6Li nucleus via ordered unitary coupled cluster, 10.1103/PhysRevC.106.034325


Bravo-Prieto, Carlos, et al. "Style-based quantum generative adversarial networks for Monte Carlo events." Quantum 2022

0.72 0.74 0.76


Test Accuracy

QT4HEP Conference

Successful QT4HEP Conference in November 2022, more than 250 attendees. A working group on Quantum Computing for HEP has been formed with participation from HEP Institutes in EU, US, Japan and other countries showing the impact that CERN is having in the field via the QTI activities.

RESEARCH

Quantum Computing for High-Energy Physics State of the Art and Challenges Summary of the QC4HEP Working Group

Alberto Di Meglio^{8*}, Karl Jansen⁵, Ivano Tavernelli³, Constantia Alexandrou¹, Srinivasan Arunachalam³, Christian W Bauer⁴, Kerstin Borras^{5,6}, Stefano Carrazza^{7,8}, Arianna Crippa^{5,29}, Vincent Croft⁹, Roland de Putter³, Andrea Delgado¹⁰, Vedran Dunjko⁹, Elias Fernández-Combarro¹¹, Elina Fuchs⁶, Lena Funcke¹², Jay Gambetta³, Daniel González Cuadra^{13,14}, Michele Grossi⁸, Zoe Holmes¹⁵, Stefan Kühn^{5,2}, Denis Lacroix¹⁶, Randy Lewis¹⁷, Donatella Lucchesi¹⁸, Miriam Lucio Martinez¹⁹, Federico Meloni⁵, Antonio Mezzacapo³, Simone Montangero²⁰, Lento Nagano²¹, Voica Radescu³, Enrique Rico Ortega²², Alessandro Roggero^{23,24}, Julian Schuhmacher³, Joao Seixas²⁵, Pietro Silvi²⁰, Panagiotis Spentzouris²⁶, Francesco Tacchino³, Kristan Temme³, Koji Terashi²¹, Jordi Tura⁹, Cenk Tüysüz^{5,29}, Sofia Vallecorsa⁸, Uwe-Jens Wiese²⁷ and Jinglei Zhang²⁸

Abstract

Quantum computers offer a fascinating path for a paradigmatic change of computing in the natural sciences and beyond, with the potential of achieving a so-called quantum advantage, namely a significant (in same cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits allows already now to execute small scale but representative applications on quantum computers. In particular, the High Energy Physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problem. This concerns, on the theoretical side, the exploration of models which are very hard or even impossible to address with classical techniques and, on the experimental side, the enormous data challenge of newly emerging experiments,

A joint paper across the HEP community published in Spring 2023. 48 contributors from HEP institutes in EU, US, and Japan

https://arxiv.org/abs/2307.03236

^{*}Correspondence:

alberto.di.meglio@cern.ch ⁸CERN, Switzerland

Full list of author information is available at the end of the article

Why CERN should engage in Quantum Technologies?

QT4HEP

Can CERN stay out of quantum technologies?

Prepare and develop technologies, capabilities, and skills required by the CERN scientific programmes and allow CERN to use and interoperate with future quantum infrastructures (LHC/HEP, LowEP, Physics Beyond Colliders, accelerators, software, computing, networks)

Exploit, extend, adapt, share, codevelop technologies and competences uniquely available at CERN, boost development and adoption of QT beyond CERN, contribute to capacity in the Member States. Use CERN reputation as a facilitator of collaboration, accelerate adoption, maximise impact

HEP4QT

How can CERN contribute to quantum technologies?

CERN QTI Phase 2 – 4 Centres of Competence

CERN QUANTUM TECHNOLOGY PLATFORMS (EP, BE, TE, SY) COLLABORATION FOR IMPACT (IT, IPT, IR)

QUANTUM NETWORKS AND COMMUNICATIONS (IT, BE)

HYBRID QUANTUM

ALGORITHMS (IT, TH, EP)

COMPUTING AND

An initiative hosted by CERN, born at GESDA, supported by UBS

THE OPEN QUANTUM INSTITUTE

https://oqi.gesda.global

The Open Quantum Institute (OQI) seeks to inclusively unleash the powers of **quantum computing** to ensure that the whole world contributes to and benefits from quantum computing.

The OQI has four core objectives, which we call the "4A's"

ACCELERATING APPLICATIONS FOR HUMANITY

Realising the full potential of quantum computing by accelerating the use cases geared towards achieving the SDGs, thanks to the combined forces of researchers and developers, entrepreneurs, the United Nations, and large NGOs.

ACCESS FOR ALL

Providing global, inclusive and equitable access to a pool of public and private quantum computers and simulators available via the cloud.

ADVANCING CAPACITY BUILDING

Developing educational tools to enable everyone around the world to contribute to the development of quantum computing and make the most of the technology.

ACTIVATING MULTILATERAL GOVERNANCE FOR THE SDGS

Providing a neutral forum to help shape multilateral governance of quantum computing for the SDGs.

CERN QTI - QTML 2023

The OQI has the potential to be the first truly multilateral effort to accelerate applications of quantum computing for the SDGs.

The Open Quantum Institute

SDG Use Cases for Quantum – bridging science and diplomacy stakeholders

→ articulation of SDG use cases

Outline the project

(Letter of Intent/Abstract)

3-5 pages

- → real-world implementation
- → scientific review

→ E.g.: Food production, Anti-microbial resistance and carbon reduction. More at https://ogi.gesda.global/applications/

Develop proof of

⟨··⟩ concept implemented

on quantum simulator

concept implemented

on quantum

Bespoke methodology

Submit themes for

methodologyto

algorithm

develop quantum

CERN and the QTML 2023

We believe that Quantum Computing and Quantum Technologies in Machine Learning will have a disruptive effect on science and research in the years to come

However, the road ahead is still steep and largely unchartered

Collaboration across disciplines and events like the QTML are the most effective ways of accelerating discoveries and applications and CERN is proud to host this year event and promote the work done by a very committed and enthusiastic community

Thanks for your contributions and enjoy the event

