// Nathan Killoran

XANADU

Better than classical? The subtle art of benchmarking quantum ML models

QTML, November 2023

// Credits

Xanadu's quantum machine learning team

Dr Maria Schuld QML Team lead Dr Richard East Researcher Dr Joseph Bowles Researcher **Dr David Wakeham** Researcher **Dr Shahnawaz Ahmed** Researcher

Dr Nathan Killoran CTO Software Dr Chae-Yeun Park Researcher Dr David Wierichs Researcher Dr Korbinian Kottmann Researcher

We're hiring!

// The QML team objective

Make quantum computers useful for machine learning

Progress in quantum machine learning

Pre-NISQ: Fault-tol. subroutines

Outsource parts of the computation to a quantum computer

NISQ era: Variational circuits

Use a model that is intrinsically quantum

// The QML team objective

Make quantum computers useful for machine learning

For this to happen we need to change some things in our approach to research

// Checking the compass: Model design

"We use an ansatz of Pauli gates and entanglers..."

Our circuit designs should be motivated better.

// Checking the compass: Model design

"Quantum models generalise/train better/worse..."

We don't know if our theory targets relevant questions.

// Checking the compass: Performance

"We prove an exponential speedup for QML..."

Our performance measures are not meaningful for (mainstream) ML.

// Checking the compass: Performance

"Our quantum model does better on MNIST..."

Our experiments do not probe the right regimes yet.

The subtle art of benchmarking

[Note: work in progress!]

What is the best benchmark design we can come up with?

Model selection

- Arxiv papers >2018 with keywords "classif", "learn", "supervised", "MNIST" [3500 papers]
- >=30 Google Scholar citations
 [561 papers]
- New NISQ quantum model for classification on conventional classical data [29 papers]
- In random subset of 15 papers
- Found implementable [11 papers]

 \rightarrow Coded up 12 models

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	ç
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	ā
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	

What is the best benchmark design we can come up with?

DataReuploadingClassifier

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	£
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	α
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3) IV

What is the best benchmark design we can come up with?

DressedQuantumCircuitClassifier

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	c
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	2
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	k
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	

What is the best benchmark design we can come up with?

IQPVariationalClassifier

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	¢
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	Kerr
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	le
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	ç
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	Conv

What is the best benchmark design we can come up with?

QuantumMetricLearner

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	6
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2)Keri
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	hel
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	QC
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	onv

What is the best benchmark design we can come up with?

CircuitCentricClassifier

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	6
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	VKeri
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	hel
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	Q
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	Conv

What is the best benchmark design we can come up with?

IQPKernelClassifier

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	6
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	ġ
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	£
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	

What is the best benchmark design we can come up with?

QuantumKitchenSinks

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	Q
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	£
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	Keri
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	le
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	n n

What is the best benchmark design we can come up with?

	Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
	Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
	*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
	Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	QN
	Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
	[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
	[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
	*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	ຄ
	Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	Kerr
	Huang et al. "Power of data in quantum machine learning." 2011.01938v2	lel
1		
	Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	QC
	Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	VUC

What is the best benchmark design we can come up with?

QuanvolutionalNeuralNetwork

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	QZ
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1	Q
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	0010

What is the best benchmark design we can come up with?

WeiNet

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3 Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2 *Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2 Lloyd et al. "Quantum embeddings for machine learning." 2001.03622 Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1 [Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2] [Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	QNN
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2 Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2 Huang et al. "Power of data in quantum machine learning." 2011.01938v2	QKernel
Henderson et al. "Quanvolutional neural networks: powering image recognition" 1904.04767v1 Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	QConv

What is the best benchmark design we can come up with?

Tasks

- Binary classification
- Figure of merit: accuracy
- 4 datasets of variable dimension:

What is the best benchmark design we can come up with?

Tasks

- Binary classification
- Figure of merit: accuracy
- 4 datasets of variable dimension:
 - **SIMPLE:** Linearly separated points in hypercube

What is the best benchmark design we can come up with?

Tasks

- **Binary classification** •
- Figure of merit: accuracy .
- 4 datasets of variable dimension:
 - **SIMPLE:** Linearly separated points • in hypercube
 - WIDELY USED: Pre-processed MNIST

-10

10

20

What is the best benchmark design we can come up with?

Tasks

- Binary classification
- Figure of merit: accuracy
- 4 datasets of variable dimension:
 - **SIMPLE:** Linearly separated points in hypercube
 - WIDELY USED: Pre-processed MNIST
 - [**REALISTIC:** Low-dimensional manifolds (Goldt 2019, Buchanan 2020)]
 - [TAILORMADE: Multi-dimensional Fourier series]

https://www.nature.com/articles/s41467-020-14578-5

What is the best benchmark design we can come up with?

Crucial decisions

- Faithful implementation We carefully deduced the model design and training procedure from the paper
- Convergence criteria We compare averages over 2 loss intervals
- Batches in SGD We didn't optimize this hyperparameter, but adapted it to runtime needs
- Data preprocessing We always prescaled data to a meaningful interval (like [0, 2pi])
- Hyperparameter optimisation grid We balanced choices from paper, common sense and runtime considerations
- Classical comparison We pick matching box classical models with typical sizes: NN, SVM, CNN

Hyperparameters matter

number of features

Test score range on PCA-reduced+subs. MNIST

Test score range on coarse-grained MNIST over all hyperparameters

Out-of-the box classical models are not easily beaten

Separable circuits perform the same

This is (more or less) the basic circuit we replace all quantum circuits with!

What "features" do our quantum models create?

Example for input $x = [x_{\gamma}, x_2]$

What "features" do our quantum models create?

Example for input $x = [x_{1}, x_{2}]$

What "features" do our quantum models create?

Example for input $x = [x_{\eta}, x_2]$

linear + trigonometric
sin(vx+b₁)sin(wx+b₂)

 $\frac{\sin(\mathbf{vx}+\mathbf{b}_{1})\cos(\mathbf{wx}+\mathbf{b}_{2})}{\cos(\mathbf{vx}+\mathbf{b}_{1})\sin(\mathbf{wx}+\mathbf{b}_{2})}$ $\cos(\mathbf{vx}+\mathbf{b}_{1})\cos(\mathbf{wx}+\mathbf{b}_{2})$

Pérez-Salinas et al. "Data re-uploading for a universal quantum classifier." 1907.02085v3	
Mari et al. "Transfer learning in hybrid classical-quantum neural networks." 1912.08278v2	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	
Lloyd et al. "Quantum embeddings for machine learning." 2001.03622	QN
Schuld et al. "Circuit-centric quantum classifiers." 1804.00633v1	Z
[Zhang et al. "Toward trainability of quantum neural networks." 2011.06258v2]	
[Zoufal et al. "Variational quantum Boltzmann machines." 2006.06004v1]	
*Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." 1804.11326v2	ç
Wilson et al. "Quantum kitchen sinks: An algorithm for ML on near-term" 1806.08321v2	Nell
Huang et al. "Power of data in quantum machine learning." 2011.01938v2	ā
Hondorson et al. "Quanyolutional neural networks: neworing image recognition" 1004.04767v1	_
Wei "A quantum convolutional neural network on NISQ devices." 2104.06918v3	

What "features" do our quantum models create?

Example for input $x = [x_{\eta}, x_{2}]$

NN + trigonometric

What "features" do our quantum models create?

Example for input $x = [x_{\gamma}, x_2]$

What "features" do our quantum models create?

Example for input $x = [x_{\gamma}, x_2]$

Separable circuits perform the same

Are we "just" building trigonometric/polynomial feature extractors?

https://playground.tensorflow.org/

Here comes the SU(N): multivariate quantum gates and gradients

Roeland Wiersema,^{1,2} Dylan Lewis,³ David Wierichs,⁴ Juan Carrasquilla,^{1,2} and Nathan Killoran⁴

¹Vector Institute, MaRS Centre, Toronto, Ontario, M5G 1M1, Canada ²Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada ³Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom ⁴Xanadu, Toronto, ON, M5G 2C8, Canada

21 Nov 2023, 16:45

Thank you 🛞 XANADU

We're hiring!

xanadu.ai Twitter/X: @XanaduAI

Copyright © 2023 Xanadu Quantum Technologies Inc. | Strictly Confidential

