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Outline:

1) the motivation
2) the TDA problem and the algorithm(s)
3) TDA, bounds and complexity theory
4) QTDA versus current algorithms
5) Other open questions
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TDA?

Learning with Optimized 

Random Features?


Variational business
Quantum data…
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(SUSY)*

80 billion Toffolis in TDA…

medicine, materials, 

entanglement, time-series…

Complex network

analysis

(Q)TDA
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Topological Data Analysis

Machine learning: about “robust” properties of data
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Topological Data Analysis

Machine learning: about “robust” properties of data
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Machine learning: about “robust” properties of data


rescaling
 rotating
data

= = =

continuous 

deformation


Topology of data 

Remains:

Topological Data Analysis
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“simplicial complex”
clique complex (graph)“connect if 


close”

part of pipeline

Topological Data Analysis
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features = # k-dimensional holes 
=  (Betti numbers)(βk)k

*(persistent homology, barcodes, consider all )ϵ

part of pipeline

Topological Data Analysis
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ΔG
k

combinatorial Laplacian

part of pipeline

“connectivity” of (k+1)-cliques

Topological Data Analysis
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ΔG
k βk = dim(Ker(Δk))

part of pipeline

“connectivity” of (k+1)-cliques for βk

Topological Data Analysis


combinatorial Laplacian



16

ΔG
k βk = dim(Ker(Δk))

part of pipeline

…


Hermitian… sparse access…

Hint-hint

( n
k + 1) − dimensional

Topological Data Analysis


combinatorial Laplacian
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Input: Graph. Vertices = qubits.


  - 3 clique|11100⟩   - not a 3 clique|11100⟩
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Boundary map ( )∂G
k : ℋG

k+1 → ℋG
k

∂k |x⟩ =
k

∑
j=0

(−1) j |x\( j)⟩ ∂G
k = PG

k (∂k)PG
k+1

PG
k = ∑

c∈Clk(G)

|c⟩⟨c |
set j-th to zero

Restriction to G will be vital
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|11100⟩ → |01100⟩ − |10100⟩ + |11000⟩
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Boundary map and combinatorial Laplacian

dim(Ker(Δk)) = βk

compute on a QC!

ΔG
k = ∂G†

k∂G
k + ∂G

k+1∂
G†

k+1
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Lloyd, Garnerone, Zanardi (LGZ)* ideas

H exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

random

eigenvector

*S. Lloyd, S. Garnerone & P. Zanardi, Nat Commun. Vol. 7, Article no.: 10138 (2016)
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Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector

random

state

11
N

= =

H exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

*S. Lloyd, S. Garnerone & P. Zanardi, Nat Commun. Vol. 7, Article no.: 10138 (2016)

H → ΔG ∂G
k = PG

k (∂k)PG
k+1

must only operate on valid cliques



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector

random

clique in graph= =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)

+ some projections needed



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

QPE to precision

gap = min{ |λ | |λ ≠ 0}

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

Quantum costs: Classical (vanilla) costs:

• 

•note if  
O(nk)

k ∼ n → O(exp(n))
•Ham. sim. = cheap (low-deg poly n)

•QPE to prec. gap = could be cheap 
•random clique sampling

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)



details matter



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

Quantum costs: Classical (vanilla) costs:

• 

•note if  
O(nk)

k ∼ n → O(exp(n))
•Ham. sim. = cheap (low-deg poly n)

•QPE to prec. gap = could be cheap 
•random clique sampling = NP-hard

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

Quantum Classical (vanilla) costs:

Efficient if clique sampling efficient

Dense graphs.
Vanilla algorithm still exponential

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)

But this is certainly a special case



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

Quantum Classical (vanilla) costs:

Estimates normalized  

Betti numbers = 
βk

#k-cliques

Gets exact Betti!

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)



Lloyd, Garnerone, Zanardi (LGZ)* ideas

random

eigenvector =

HG exp(iHt) λ #zeros
#samples

≈ϵ
dim(Ker(H))

dim(H)
Ham

Sim QPE = 0 ?

random

clique in graph=∑ ⃗b ∈Clk(G) | ⃗b ⟩⟨ ⃗b |

|Clk(G) |

*S. Lloyd, S. Garnerone & P. Zanardi, "Nat Commun. Vol. 7, Article no.: 10138 (2016)

Quantum computers enable 

efficient (additive error) estimation of normalized approximate Betti numbers 
in regimes where clique sampling is efficient



What is the context! TDA v.s. QTDA

G. A. Hamilton, F. Leditzky, arXiv:2307.07492 (2023)
Image source: https://indico.cern.ch/event/958074/contributions/4133637/attachments/2163528/3652970/Shiu-sd2020.pdf
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What is the context! TDA v.s. QTDA

G. A. Hamilton, F. Leditzky, arXiv:2307.07492 (2023)
Image source: https://indico.cern.ch/event/958074/contributions/4133637/attachments/2163528/3652970/Shiu-sd2020.pdf



G. A. Hamilton, F. Leditzky, arXiv:2307.07492 (2023)

classical and 

quantum efficient

quantum 

efficient for 

normalized Betti

classical 

unclear

What is the context! TDA v.s. QTDA

need to need

high Bettis


for Q. advantage



Questions
1) can we do significantly better on a QC? 

‣better precision? 
‣full range of densities? 

2) is there a guaranteed quantum advantage 
for what we do have, and can it be relevant? 

‣hardness of TDA? 
‣when is the QC algorithm truly faster against vanilla… 
‣…and new classical algorithms? 

 
3) Beyond basic TDA applications, or 

‣are there better applications we are missing



Can we do significantly better on a QC? 
‣ better precision? 
‣ full range of densities?
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Multiplicative estimation of Betti numbers

is QMA1-hard (2022)


New (King,Kohler, ’23-ish): 

under promised eigenvalue gap, 
QMA1-hard and in QMA 

R. King,T.  Kohler, ??? (in 1 week?)
M. Crichigno, T. Kohler, Clique Homology is QMA1-hard (2022)
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under promised eigenvalue gap, 
QMA1-hard and in QMA 



No.

R. King,T.  Kohler, ??? (in 1 week?)
M. Crichigno, T. Kohler, Clique Homology is QMA1-hard (2022)

Lemma: it is also hard when the graph  
is clique-dense
➡Hardness is NOT in clique sampling
➡“Homology is quantum”

Multiplicative estimation of Betti numbers

is QMA1-hard (2022)


New (King,Kohler, ’23-ish): 

under promised eigenvalue gap, 
QMA1-hard and in QMA 



Is there a guaranteed quantum advantage 
for what we do have, and can it be relevant? 

‣ hardness of TDA? 
‣ when is the QC algorithm truly faster against “vanilla”… 
‣ …and new classical algorithms?



Generalizations of normalized-Betti-estimation are DQC1-hard

C. Gyurik, C. Cade, VD, Towards quantum advantage for topological data analysis (2020) 
C. Cade, M. Crichigno,Complexity of Supersymmetric Systems (2021)



Generalizations of normalized-Betti-estimation are DQC1-hard

DQC1 model of computation:

C. Gyurik, C. Cade, VD, Towards quantum advantage for topological data analysis (2020) 
C. Cade, M. Crichigno,Complexity of Supersymmetric Systems (2021)



C. Gyurik, C. Cade, VD, Towards quantum advantage for topological data analysis (2020) 
C. Cade, M. Crichigno,Complexity of Supersymmetric Systems (2021)

Marcos and Chris different (better) generalization



Generalizations of normalized-Betti-estimation are DQC1-hard

DQC1 model of computation:

C. Gyurik, C. Cade, VD, Towards quantum advantage for topological data analysis (2020) 
C. Cade, M. Crichigno,Complexity of Supersymmetric Systems (2021)

However, generalizations quite substantial. Also, not in BQP for full range. 
Interestingly, QMA1 hardness of multiplicative error does not give DQC1 result. 
Question unresolved. Better classical algorithms emerging for regions of interest.
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There is a reason to be worried*

efficient (additive error) estimation of normalized approximate Betti numbers 
in regimes where clique sampling is efficient

(*but I think in some cases we will be fine 
** arboricity properties will do, but let’s not complicate)



There is a reason to be worried*

efficient (additive error) estimation of normalized approximate Betti numbers 
in regimes where clique sampling is efficient

normalized = Betti / total-clique-number

sampling is efficient = dunno, have many cliques out of all possible, probably**? 

(*but I think in some cases we will be fine 
** arboricity properties will do, but let’s not complicate)

total-clique-number is …. → Ω(nk /poly(n))



There is a reason to be worried*

(*but I think in some cases we will be fine 
** arboricity properties will do, but lets not complicate)

Known results: Betti numbers tend to scale linearly with n  
Normalized Betti … is zero (to inverse sub-exponential additive error).




Is there a guaranteed quantum advantage 
for what we do have, and can it be relevant? 

‣ hardness of TDA? 
‣ when is the QC algorithm truly faster against vanilla… 
‣ …and new classical algorithms?



arXiv:2209.13581

Polynomial	improvements	in:	
(i)	Dicke	state	prepara6on,	clique	checking,	(ii)	filtering	for	Kernel	projec6on,	
(iii)	beAer	amplitude	es6ma6on	for	op#mal	Toffoli	gate	count	

also	moved	to	rela#ve	error	scalings	for	the	es#ma#on	of	Be8	numbers!	
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Cost for relative 
error r for :βk−1 2

ln(1/δ)
r

#k-cliques
βG

k−1

π
4

(n
k)

#k-cliques (n log2 n + 6 |E | )× ×

Amplitude estimation Amplification Preparing cliques

Polynomial	improvements	in:	
(i)	Dicke	state	prepara6on,	clique	checking,	(ii)	filtering	for	Kernel	projec6on,	
(iii)	beAer	amplitude	es6ma6on	for	op#mal	Toffoli	gate	count	
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Quantum dominating 

factor for :βk−1
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(n
k)

βG
k−1

Quantum dominating 

factor for :βk−1 Classical vanilla cost: #k-cliques ≤ (n

k)

Polynomial	improvements	in:	
(i)	Dicke	state	prepara6on,	clique	checking,	(ii)	filtering	for	Kernel	projec6on,	
(iii)	beAer	amplitude	es6ma6on	for	op#mal	Toffoli	gate	count	



arXiv:2209.13581

(n
k)

βG
k−1

Quantum dominating 

factor for :βk−1 Classical vanilla cost: #k-cliques ≤ (n

k)
Do graphs which are “Betti dense” (quantum easy) 

but still large in clique numbers (classically hard) even exist?

(= can the red be superpolynomially larger than the blue?)

Polynomial	improvements	in:	
(i)	Dicke	state	prepara6on,	clique	checking,	(ii)	filtering	for	Kernel	projec6on,	
(iii)	beAer	amplitude	es6ma6on	for	op#mal	Toffoli	gate	count	
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Do there exist graphs allowing a superpolynomial advantage? 

Regime  - classical runtime is poly, no superpolynomial speed-upk ∈ O(1)

Regime ,  - classical runtime is exponential… but so is the quantum k = cn c ∈ [0,1)

reminder k= dimension of holes we are counting (which Betti?)
n = # vertices
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Tq ∼ exp(k(1 + k/n)/2)

Tc ∼ exp(k × (1 + ln n/k))

Regime .k ∈ Θ(polylog(n))

K(n/k, k)

α s.t. Tc = Tα
q ; α ∈ Θ(log(n))

Superpolynomial speed-up

Do there exist graphs allowing a superpolynomial advantage? 

Künneth formulas
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Computing actual numbers…

k=16,   n=256 

“speed-up”~  7.5th power


Dimension  ~ 


Classical: #cliques ~ 1019


Quantum: 80 billion Toffolis

(n
k) 1025

(n
k)

#cliques
k = 16

quantum cost



Clique sampling circumvented

Not accessible due to no

efficient generic sampling method

of cliques from graphs

“Maximal faces” representation:

QMA1 hardness persists.

Likely DQC1 hardness as well.
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In the meantime…
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In the meantime…

Gap Error

has constant  
gap .γ ∈ Θ(1)



62

In the meantime…

Gap Error

has constant  
gap .γ ∈ Θ(1)

perturbation has γ ≤
1
n

superpoly speed-up
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In the meantime…

Gap Error

normalized approximate Betti numbers  
approximate = counting small eigenvalues (not silly due to Chegeer-like arguments)
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In the meantime…

Gap Error

normalized approximate Betti numbers  
approximate = counting small eigenvalues (not silly due to Chegeer-like arguments)

small = small constant or no quantum advantagelog−1(n) →

small =   mebbe quantum advantagepoly−1(n) →



65

Meta-problem

we prove separations… by computing Betti number
so there exists an efficient algorithm, and we know it!
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we prove separations… by computing Betti number
so there exists an efficient algorithm, and we know it!

but if we cannot compute it… we cannot claim quantum speed-up
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Meta-problem

we prove separations… by computing Betti number
so there exists an efficient algorithm, and we know it!

but if we cannot compute it… we cannot claim quantum speed-up

Solution: prove certain perturbations sometimes perturb the Betti measurably
by a small amount without explicitly computing it

(Likely) can be done, as alternatively adding edges could 

always fully uncontrollably change Betti numbers, or do nothing…

To be sure-sure: prove DQC1-hardness!
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Are superpolynomial speedups for TDA likely generic?

Likely not. For generic graphs, we do not have the nice properties.…

For Erdős-Renyi graphs, there are regions with expected quartic speed-ups


For Vietoris-Rips complexes (i.e., the way I described the pipeline from point clouds)

for data from i.i.d. distributions, avg. Betti numbers do not scale fast enough.


But already in 2D (worst) case: 

Large Betti and small gap….



Small summary

DQC1 hardness needed

high Betti problems needed
huge v.s. tiny Betti problems needed

graph density / max face input settings needed
non-iid point-clouds needed


but superpoly speed-ups still plausible

some high-poly speed-ups even likely 

and there is much more to the overall topic


good approximate Betti needed



Beyond obvious TDA applications

Betti numbers 
Persistence properties

Other complexes
Other homology problems



Witten ’82  
https://arxiv.org/pdf/2107.00011.pdf*Image credit: Scientific American, JSTOR

Supersymmetry		

SUSY	QM	on	lattices		

Homology

Homology	on		
(simplicial)	complexes

supercharge	operators

(SUSY)*



Witten ’89  
https://arxiv.org/pdf/2107.00011.pdf*Image credit: Scientific American, JSTOR

#ℓ-dim holes = #ℓ-fermion ground states

fine print: the above is for the independence complex

(SUSY)*



Witten ’89  
https://arxiv.org/pdf/2107.00011.pdf*Image credit: Scientific American, JSTOR

#ℓ-dim holes = #ℓ-fermion ground states

fine print: the above is for the independence complex

(SUSY)*

quantum computational physics  computational physics  theory  quantum TDA methods↔ ↔ ↔



Combinatorial Laplacians for complex networks 

spectral entropy of higher-order 

representations of networks Maletić S., Rajković M., Eur. Phys. J. ST (1) , pp. 77-97(2012) 

Boccaletti et al., Phys. Rep., vol. 1018, pp. 1-64 (2023)

Quantity: 

Generalizations hard as Renyi entropies known to be DQC1-hard

Precision not as obviously problematic

Clique sampling still an issue, depending on the model



Some topics in group + friends

Computational many-body methods & comp. topology 
Heuristic and QML algorithms for comp. topology
Applications of (Q)TDA to HEP and other physics

Other developments in complexity and new algos

Patrick Alice

Mahtab Vincent

Casper

Sofia Michele

Robbie Hayakawa

Applications in biology (networks)

Waheeda



*Image credit: Scientific American, JSTOR

(SUSY)*

medicine, materials, 

entanglement, time-series…

(Q)TDA

Quantum+Topology** is well-connected and rich
** Don’t get me started on TQFT and knots!
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