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Quantum machine learning & power of data

Data limited problems - Limited by availability of data, 
no computation possible to overcome lack of data

Transduced quantum state
Analog simulation state
Output of computation
…

(limited copies)

Copies ~ 
exp(n)

Copies ~ n

Compute ~ ?

Compute ~ ?

Computationally limited problems - Simple inputs, known computational procedure

Key to factor
Hamiltonian to simulate
… Compute ~ exp(n)

Compute ~ n

Data assisted problems - Known 
computational procedure, complexity 
can change with available data 
(~advice)



The power of data in quantum machine learning*

* Hsin-Yuan (Robert) Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut 
Neven, Jarrod R. McClean “Power of data in quantum machine learning” Nature Communications, Vol.12, 
No. 2631 (2021)



Quantum memory and quantum-enhanced experiments

Quantum advantage in learning from experiments
Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean
Science 376, 6598 (2022)

Quantum memory, classical model- Exponential advantage with exactly 2 copies on 2 different 
tasks and efficient classical compute



Do we need fully quantum models for quantum data?

Which models we might use are fully quantum models and what are they good for?

With and without quantum memory, we find an advantage using classical data extracted from quantum computations 
with classical models.  One might be tempted to call these semi-classical learning models.



































































What models require a “quantum program”

Another situation where we can allow quantum data to define a model is a kernel 
method  

Both quadratic and projected kernel efficiently learn discrete log problem (given right quantum embedding)

1 - Havlicek et al, Nature. vol. 567, pp. 209-212 (2019)
2 - Huang et al, Nature Communications  12, Article number: 2631 (2021)

(Quadratic) Quantum kernel1

(training data & test data in quantum 
state form)

Projected quantum kernel2

(training data just classical bit strings, 
test data first reduced to bit strings)

Classical shadows → nonlinear 
function → K(x, z)



Fully quantum vs semi-classical kernel methods

On the other hand, no linear observable can determine the topological phase [Huang 22], while projected kernels can, 
so there *may* be some functions the projected kernel can naturally estimate the quadratic kernel cannot

Projected quantum kernel2(Quadratic) Quantum kernel1

(training data & test data in quantum 
state form)

(training data just classical bit strings, 
test data first reduced to bit strings)

Classical shadows → nonlinear 
function → K(x, z)

Classical shadows on two unknown states cannot be used to efficiently estimate fidelity [Anshu 22] hence 
there must be functions quadratic quantum kernel computes the projected quantum kernel cannot

This separation may vanish if training and test data is built from polynomial complexity circuits [Zhao 23] 

[Huang 22] - “Provably efficient machine learning for quantum many-body problems” 
Huang, Kueng, Torlai, Albert, Preskill - Science 377.6613 (2022)

[Anshu 22]- “Distributed quantum inner product estimation” 
Anshu, Landau, Liu (STOC 2022), pp. 44-51

[Zhao 23] - “Learning quantum states and unitaries of bounded gate complexity”, 
Zhao, Lewis,  Kannan, Quek, Huang, Caro arXiv:2310.19882 (2023)



A case where currently quantum models matter

Open question - Does a computationally efficient semi-classical 
model with quantum memory exist for this task or is it essentially fully 
quantum?

Efficient -
Number of copies N scales like ~log M poly(n), 
Computation scales like ~M log M poly(n)

Classical shadows (single copy, semi-classical) -
k-local Pauli’s only, magnitudes, and signs

2-copy bell sketches (two copy memory, semi-classical) -
All Pauli’s, magnitudes only, efficient methods for signs unknown

Small quantum memory (log copy memory, quantum) -
All Pauli’s, efficient magnitudes and signs

Huang, Kueng, and Preskill. "Information-theoretic bounds on quantum advantage in machine learning." Physical 
Review Letters 126.19 (2021): 190505.

Given N copies of a n qubit quantum state 𝜌, when is it efficient to determine M Pauli operators e.g. Pj=X⊗Z⊗…⊗Y 



Making a gamble with classical data
Quantum data is interesting for future discovery of the universe (recall the impact of CCD cameras on telescopes - see 
“The Perfect Theory”), but most data we work with today, even from quantum systems, seems classical.

There are a few pieces of evidence that QC might help for classical data (sampling hard distributions, learning problems 
based on discrete log, linear algebra routines, …) but a lot of pieces of evidence that it will be hard to achieve in practice

Immediate path for everyone opening Nielsen and Chuang 
1. Stick N features of classical data into Log N qubits
2. Read about Holevo’s bound limiting you to Log N bits of information out, get sad

Naive amplitude encoding + expected values limits you to quadratic functions on data - pretty weak models

Rotation based encoding and calling data multiple times (Data re-uploading) can get trig functions and higher degree 
polynomials - but can be hard to design in some cases [Schuld et al 2020]

In fault tolerance, about as easy to encode data in a way that allows non-linear functions over compact intervals for each 
feature by applying a unitary to the state

Even when amplitude encoding or feature-by-feature is enough - loading data always scales with ~N, 
many successful classical algorithms scale like N or < N – advantage lost?



Current premier models

Bard - 137 billion parameters (~1011 )

GPT 3 - 175 billion parameters (~1011 )

GPT 4 - 1.76 Trillion parameters (~1012 ) (Speculated)

When # of key parameters like weights or # of data points ~ 1012 any scalings worse than linear 
can be catastrophic and determines architecture / algorithm success or failure.

The same may be true in the quantum case independent of the large Hilbert space dimension



Quantum communication complexity

Alice has x, Bob has y, want to compute f(x,y), and the cost is only counted in terms of bits or qubits exchanged

x y

In spite of Holevo’s bound stating n qubits contain n bits of information, exponential 
quantum communication advantages are known. Sending log n qubits in place of n bits

Exponential communication advantaged shown for linear regression problem 
Montanaro A, Shao C. Quantum communication complexity of linear regression arXiv:2210.01601 (2022)

Raz problem

Inputs

Size N N x N N x N

Output 0(1) if Vx is close to M0(M1)

Quantum - Log N qubits
Classical - Ω(√N) bits

Some existing work in ML-like problems



Distributed quantum networks & models

…

(Computer & Repeater)

Conjecture / opinion (controversial?) -
- The ability to make good quantum networks will be roughly coincident with really good quantum memories.  
- Requirements beyond quantum memory - heralded transduction fidelity, rate, entanglement distillation - relatively modest.  
- What we lack is compelling, end-to-end costed out applications to help motivate their development.

Gilboa , McClean “Exponential Quantum Communication Advantage in Distributed Learning”arXiv:2310.07136 (2023)

For an expressive class of functions, we find an exponential quantum 
communication advantage in the problem of inference and gradient 
determination.



Small communication advantage with ‘simple’ 
circuitsRaz problem

Inputs

Size N N x N N x N

Output 0(1) if Vx is close to M0(M1)

Quantum - Log N qubits
Classical - Ω(√N) bits

If M or V generated from polylog(N) ~ 
poly(n) and white box, it suffices to send 
circuit description.  

If M or V generated from polylog(N) ~ 
poly(n) and blackbox, it suffices to send 
Clifford classical shadows.  

Lack of communication advantage, does not preclude computational advantage though.  
- Suppose M or U was pseudo-random.  
- Using black box + classical communication approach requires exponential classical computation 

under cryptographic assumptions



Problem structure can degrade advantage

If the classifier is really good ( ɣ ~ 1), classical = quantum = O(1)



Exponential advantage in more general PQC 
models



Model expressivity and privacy



Expressivity - a double edged sword

Recall, if we want this approximation converge for each feature 
dimension separately, we can use the relatively easy to prepare state 
|x> using Log(N) Log(M) qubits 

Only contains quadratic cross-feature terms, not complete across all N dimensions

Counting arguments tell you for this you need the multi-dimensional fourier state using N Log (M) 
qubits, which is the same complexity to just send the full state x classically → no communication 
advantage



Summary and outlook

Punchline - Quantum devices today allow us to build 
classical impressive classical models, but fully 
understanding when a quantum model is required and 
what it accelerates remains an interesting open 
question

Quantum data Classical data

Punchline(s) - Data changes the landscape of quantum 
advantage.  If we can accept a future where stored 
quantum data states are stable and computers 
networked, we may find significant communication and 
privacy advantages in taking advantage of quantum 
encodings. 
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