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Quantum neural networks in multi-class classification

⎋Why exploring multi-class classification tasks are important?

☃Many fundamental problems in classical and quantum machine learning can be categorized to classifications.

Image classification Phase transition classification

Expressivity

GeneralizationTrainability

learnability  

⎋Our main contributions:

Rem, B.S., Käming, N., Tarnowski, M. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 15, 917–920 (2019).

✓Unify the trainability, generalization, and expressivity into a single and general framework;

✓Interpret the trainability of QCs from a geometric view (link quantum measurement theory);

✓Derive a non-vacuous generalization error bound of quantum classifiers (even for over-para);

✓Unravel trainability is more deterministic than generalization of QCs;

✓Show disparate risk curves between classical classifiers and quantum classifiers;

✓Devise an efficient method to examine the power of QCs.
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Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Notations

Input data space: 𝒳; 

Label space: 𝒴 = {1, 2, … , 𝐾};

Train set: 𝒟 =∪𝑘=1
𝐾 𝑥 𝑖,𝑘 , 𝑦 𝑖,𝑘

𝑖=1

𝑛𝑘
, each example drawn i.i.d from an unknown distribution 𝔻 on 𝒵 = 𝒳 × 𝒴;

The 𝑖-th example in the 𝑘-th class: (𝑥 𝑖,𝑘 , 𝑦 𝑖,𝑘 );

Balanced dataset: 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘 = ⋯𝑛𝐾, total number of training data points is 𝒟 = 𝑛 = 𝐾 ⋅ 𝑛𝑘;

Intuition 

An algorithm 𝒜 aims to use 𝒟 to infer a hypothesis (i.e., classifier) ℎ𝒜𝒟
:𝒳 → ℝ𝐾 from hypothesis space ℋ to accurately  

separate examples sampling from 𝒵 = 𝒳 × 𝒴 to the corresponding classes.
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෠ℎ = argmin
ℎ∈ℋ

ℒ(𝒉,𝒟) ≔
1

𝑛
෍

𝑖=1,𝑘=1

n𝑐,𝐾

𝑙 𝑦 𝑖,𝑘 , ො𝑦(𝑖,𝑘) + 𝔈 𝒉 .

Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Definitions

The optimal hypothesis refers to ℎ∗ = min
ℎ∈ℋ

ℜ(ℎ), where ℜ ℎ ≔ 𝔼 𝑥,𝑦 ∼𝔻[ℓ (ℎ 𝑥 , 𝑦)] is the expected risk of h;

ℓ(⋅,⋅) is the per-sample loss and we specify it to be mean square loss, i.e., ℓ a, b = | a − b |2
2;

Since 𝔻 is unknown, we approach ℜ ℎ via empirical risk ℜERM by learning an empirical classifier ෠ℎ ∈ ℋ with 
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Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

The fundamental role of the expected risk → Use expected risk to explore quantum advantages:

When the algorithm 𝒜 is classical classifier (CC), e.g., deep neural networks, the learned empirical classifier is

denoted by ෠ℎ𝐶;

When the algorithm 𝒜 is quantum classifier (QC), e.g., QNNs, the learned empirical classifier is denoted by ෠ℎ𝑄;

The quantum advantage is verified when

Reformulation of the expected risk

Recall the definition of expected risk is ℜ ℎ ≔ 𝔼 𝑥,𝑦 ∼𝔻[ℓ (ℎ 𝑥 , 𝑦)], which is intractable. As such, we rewrite it

as

ℜ ℎ = ℜERM ℎ + ℜGene ℎ .

ℜ ෠ℎ𝑄 < ℜ ෠ℎ𝐶 .

Trainability Generalization
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Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Risk curve of CCs is double-descent

Reformulation of the expected risk

Recall the definition of expected risk is ℜ ℎ ≔ 𝔼 𝑥,𝑦 ∼𝔻[ℓ (ℎ 𝑥 , 𝑦)], which is intractable. As such, we rewrite it

as

ℜ ℎ = ℜERM ℎ + ℜGene ℎ .

Trainability Generalization
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Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Mathematical formulation of QCs

Empirical loss to be minimized: ෠ℎ𝑄 = arg min
ℎ𝑄∈ℋ𝑄

ℒ(ℎ𝑄, 𝒟) ≔
1

𝑛
σ𝑖=1,𝑘=1
n𝑐,𝐾 𝑙 𝑦 𝑖,𝑘 , ො𝑦(𝑖,𝑘) + 𝔈 ℎ𝑄 .

The hypothesis space for an N-qubit QC is ℋ𝑄 = ℎ𝑄 ⋅, 𝑈 𝜃 , 𝑂 𝑘′
𝑘′=1:𝐾

𝜃 ∈ Θ

• ො𝑦(𝑖,𝑘) = [ℎ𝑄 𝑥(𝑖,𝑘), 𝑈 𝜃 , 𝑂 𝑘′
𝑘′=1:𝐾

, 𝑤ℎ𝑒𝑟𝑒 ⋅ 𝑘=1:𝐾 is a K−dim vector;

• The 𝑘-th entry ℎ𝑄 𝑥, U 𝜃 , O 𝑘 = Tr(𝑂 𝑘 𝑈 𝜃 𝜎(𝑥)𝑈 𝜃 ⊤) refers to the prediction of QC for the k-th label;

• 𝜎(𝑥) is the input state of x;

• 𝑈 𝜃 is the ansatz, i.e., 𝑈 𝜃 = ς𝑙=1
𝑁𝑡 𝑢𝑙 𝜃 𝑢𝑒 ∈ 𝒰(2

𝑁) with 𝑢𝑙 ∈ 𝒰 2𝑚 ∀𝑙 ∈ [𝑁𝑡] operated on at most m-

qubits;

• 𝑶 = 𝑂 𝑘
𝑘=1

𝐾
is the set of measurement operators.

𝕀
𝕀

ℤ
ℤ
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Problem setup of K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

𝑜(1)𝑜(2)𝑜(3)

𝜌(𝑖,𝑘)

ℇ(𝑥(𝑖,𝑘))𝑥(𝑖,𝑘)

𝑜(4)

Unification of QCs

The diverse choice of ansatz, encodings, and measurement operators challenges the analysis. Fortunately, we can

design a unified model to cover all these diversities.

Feature state

ℎ𝑄 𝑥(𝑖,𝑘), U 𝜃 , O 𝑘 → ℎ𝑄 𝜌 𝑖,𝑘 , 𝑜 𝑘 ≡ Tr 𝜌 𝑖,𝑘 𝑜 𝑘 , ∀𝑘 ∈ [𝐾]

𝑂 𝑘 = 𝕀2𝑁−𝐷 ⊗𝑜 𝑘 with 𝑜 𝑘 being non-trivial operator on 2𝐷-dim system;

𝜌 𝑖,𝑘 = Tr𝐷 𝑈 𝜃 𝜎 𝑥 𝑖,𝑘 𝑈 𝜃 ⊤ ∈ ℂ2
𝐷×2𝐷 is the feature state of 𝑥(𝑖,𝑘).
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Results of QCs for K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Theorem 1 (informal). Following the above notations, when the train data size is 𝑛 ∼

𝑂(𝐾𝑁𝑔𝑒log
𝐾𝑁𝑔𝑒

𝜖𝛿
) with 𝜖 being the tolerable error, and the optimal sets of 𝝆∗ and

𝒐∗ satisfy three conditions: (i) the feature states have the vanished variability in the

same class; (ii) all feature states are equal length and are orthogonal in the varied

classes; (iii) any feature state is alignment with the measure operator in the same class,

with probability 1−𝛿, the expected risk of QC tends to be zero, i.e., ℜ ෠ℎ𝑄 → 0.

𝑜(1) 𝑜(2) 𝑜(3)

𝜌(𝑖,𝑘)

ℇ(𝑥(𝑖,𝑘))𝑥(𝑖,𝑘)

𝑜(4)

Feature state
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Results of QCs for K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Theorem 1 (informal). Following the above notations, when the train data size is 𝑛 ∼ 𝑂(𝐾𝑁𝑔𝑒log
𝐾𝑁𝑔𝑒

𝜖𝛿
) with 𝜖 being the tolerable

error, and the optimal sets of 𝝆∗ and 𝒐∗ satisfy three conditions: (i) the feature states have the vanished variability in the same class;

(ii) all feature states are equal length and are orthogonal in the varied classes; (iii) any feature state is alignment with the measure

operator in the same class, with probability 1−𝛿, the expected risk of QC tends to be zero, i.e., ℜ ෠ℎ𝑄 → 0.

Implications:

1. The scaling 𝑛 ∼ 𝑂(𝐾𝑁𝑔𝑒log
𝐾𝑁𝑔𝑒

𝜖𝛿
) shows that a low generalization error ℜGene

෠hQ can be achieved using few training data;

2. Conditions (i)-(iii) sculpt the geometric interpretations of the set of feature states 𝛒∗ and the set of local observables 𝐨∗ to

achieve ℜ ෠ℎ𝑄 → 0, i.e., ℜERM
෠ℎ𝑄 → 0 (when perfect training happens):

▪ Classical view: link with neural collapse (Condition I + II);

▪ Quantum view: connect with quantum state discrimination, i.e., for any two varied classes, 𝐨∗(𝑘) and 𝐨∗(𝑘
′)

classifies

ത𝜌(𝑘) and ത𝜌(𝑘
′) with prob 1 [maximize the Helstrom bound] (Condition I + II + III).

Perfect training

of QCs

Lo
ss
er
ro
r

Papyan, Vardan et.al . PNAS 117.40 (2020): 24652-24663
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Results of QCs for K-class classification (𝐾 ≥ 2) [applied to both classical and quantum classifiers]

Theorem 1 also suggests the empirical risk dominates the expected risk, i.e., ℜ ℎ = ℜERM ℎ + ℜGene ℎ , since satisfying the

number of training data is easy but satisfying Conditions (i)-(iii) is challenging and problem-dependent.

Given a QC, its abilities and limitations can be quantified by examining whether the three conditions can be fulfilled. The

following Corollary shows the fundamental limitations of over-parameterized QCs.

Corollary 1. Given a QC, when its encoding unitary {𝑈𝐸 𝑥 |𝑥 ∈ 𝒳} follows 2-design, with probability 1 − 𝛿, the empirical QC follows ቚ

ቚ

Tr ቀ

ቁ

𝜎 𝑥 𝑖,𝑘 −

𝜎 𝑥 −
1

2𝑁
≤ 3/(22𝑁𝛿). When its ansatz {𝑈 𝜃 |𝜃 ∈ Θ} follows 2-design, with probability 1 − 𝛿, the empirical QC follows Tr 𝑜 𝑘 𝑜(𝑘

′) −
Tr(𝑜(𝑘′))

2𝐷
≤

Tr 𝑜 𝑘′
2
+2Tr (𝑜 𝑘′

2

)

4𝐷𝛿
.

Proof relies on the results of concentration of measure and unitary t-design.

🧲Over-parameterized 𝑈(𝜃) collapses Condition (iii) 

No-perfect training for over-QCs & ℜ ℎ𝑄 > 0.

QCs: U-shape risk curve CCs: double-descent risk curve

test risk
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Results of QCs for K-class classification (𝐾 ≥ 2) [applied to both classical and quantum data]

No-perfect training for over-QCs vs perfect training of over-CCs.

Separation of VQAs in optimization and learning

Over-parameterization is the key of using VQAs to estimate the

target result of optimization tasks (e.g., VQEs), but it forbids the

optimility in learning (e.g., QCs);

A general method to achieve perfect training in learning is unknown.

For learning, the potential quantum advantages of

QCs may posit in the regime with the modest

hypothesis space ℋ𝑄.

A: The observation in which the empirical risk

dominates the expected risk of QCs allows an

efficient method to probe power of QCs by fitting

loss dynamics [Alg. 1, Page 20].

Q: how to recognize potential quantum advantages?

QCs: U-shape risk curve CCs: double-descent risk curve

test risk
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Numerical simulation results (binary classification for parity dataset)

Dataset: 𝒳 = 0,1 6, 𝒴 = 0, 1 , 𝒟 = 𝑥 𝑖,𝑘 , 𝑦 𝑖,𝑘 , 𝒟 = 𝑛 = 48;

Labels: if the number of `0’ in 𝑥 𝑖,𝑘 is even, 𝑦 𝑖,𝑘 =0; otherwise, 𝑦 𝑖,𝑘 =1.

Number of qubits: N = 6 (basis encoding)

Ansatz 𝑈(𝜃): Hardware-efficient ansatz 𝑈 𝜃 = ς𝑙=1
𝐿 𝑈𝑙(𝜃) with the varied

number of L (varied hypothesis space);

Measurements: 𝑜 𝑘=1 = |0⟩⟨0| and 𝑜 𝑘=2 = |1⟩⟨1|.

Epochs: 40; Optimizer: SGD; 𝐿 ∈ {1,2, , , 7};

× 𝐿
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Numerical simulation results (9-class classification for Image dataset)

Dataset: Fashion-MNIST with the first 9 classes (𝒳 = ℝ28×28, 𝒴 = 1,… , 9 ,

𝒟 = 𝑥 𝑖,𝑘 , 𝑦 𝑖,𝑘 , 𝒟 = 𝑛 = 180);

Number of qubits: N = 10 (amplitude encoding with padding)

Ansatz 𝑈(𝜃): Hardware-efficient ansatz 𝑈 𝜃 = ς𝑙=1
𝐿 𝑈𝑙(𝜃) with the varied

number of L (varied hypothesis space);

Measurements: Pauli-based measurements on three qubits

Epochs: 50; Optimizer: SGD; 𝐿 ∈ [25, 100];

Class 1:

Class 2:

Class 3:



Outlook

📍The demystified U-shape risk curve of current QCs pushes in the stage of creating new

quantum learning models that can effectively learn classical data while providing proven

benefits, especially the ability of perfect training.

📍 Is nonlinearity necessary for QCs? Moreover, is double-descent risk curve necessary for QCs

to gain computational advantages in learning classical data? If necessary, how to design these

nonlinear QCs?

📍Are current QCs sufficient to gain computational advantages in learning quantum data? If so,

how to prove these advantages theoretically?
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Thank You!

Contact: duyuxuan123@gmail.com

https://yuxuan-du.github.io/
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