arXiv:2306.03481

Transition role of entangled data in quantum
machine learning

Xinbiao Wang, Yuxuan Du, Zhuozhuo Tu, Yong Luo, Xiao Yuan, & Dacheng Tao

———
QTML2023, CERN, Geneva 20 Nov 2023

& ! » THE UNIVERSITY OF
aray 1 P ’ ix }‘ i’ »* B % SYDNEY

Py »
oy ez F
1508 PEKING UNIVERSITY

> \WUHAN UNIVERSITY

= JD.COM




Quantum machine learning (QML)

Quantum-classical hybrid
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Quantum machine learning (QML)

* A general formalism for quantum machine learning models

* the type of states « the type of quantum circuits used by the learner

« the type of measurement done by the learner

Modifying any one of these parameters can change the quantum learning model!

i’f{ Evaluation metric for qguantum learning models

(£ Prediction error: the ability to accurately make predictions on unseen data
(£ Sample complexity: the training data size used by the learning algorithm

(X Query complexity: the number of total copies of the input states used by the learning algorithm



The power of entanglement in QML

Most quantum learning algorithms with quantum advantages share the common features: entanglement!
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Entangled data in QML

How about the case when incorporating entanglement into training data?

[4] shows the using entangled data can exponentially reduce the sample complexity for achieving zero

prediction error.
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Entangled data in QML

* Caveats in previous work:

(1) Infinite number of measurements
(2) Coherent learning protocol

(3) Perfect training assumption (zero training error)

How about the power of entangled data in a more realistic setting?



Realistic problem setting
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Transition role of entangled data

In the setting of finite number of measurements Does entangled data contribute to quantum advantage ?

We show that [5] : Assuming the training error is less than &, the averaged risk function is lower bounded by

S .
EyEsRy(Vs) = Q (‘9— <1 _ N mintm/(re,), m)) (€ = 0(2"))

4n ZnCZ
The implications from this lower bound in terms of r,N,m :
I:D For Schmidt rank r: Entangled data has a dual effect in the prediction error :

I:‘,) Positive effect: For a large number of measurements m > ¢;r*n,

entangled data leads to a small prediction error.

71? r = 2™ can achieve an exponential reduction in terms of training data size N compared with r = 1.

This echoes with the result achieved in [4]

[4] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets.” Physical Review Letters 128.7 (2022) 8
[5] Wang, Xinbiao, et al. “Transition role of entangled data in quantum machine learning.” Arxiv:2306_03481 (2023)



Transition role of entangled data

In the setting of finite number of measurements :Does entangled data contribute to quantum advantage ?

We show that [5] : Assuming the training error is less than &, the averaged risk function is lower bounded by

S .
EyEsRy(Vs) = Q (8— <1 _ N mintm/(re,), m}>> (€ = 0(2"))

4n ZnCZ
The implications from this lower bound :
l:D For Schmidt rank r: Entangled data has a dual effect in the prediction error :

I#) Negative effect: For a small number of measurements m < ¢;r°n,

highly entangled data not only requires a large amount of quantum resource for preparing,

but also leads to a large prediction error.

[4] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets.” Physical Review Letters 128.7 (2022) 9
[5] Wang, Xinbiao, et al. “Transition role of entangled data in quantum machine learning.” Arxiv:2306_03481 (2023)



Transition role of entangled data

We show that [5] : Assuming the training error is less than ¢, the averaged prediction error is lower bounded by

g2 <1 _ N-min{m/(rc,), rn}

E,EsRy (Vs) = Q (— D

o )) (c; = O(2"/&%))

The implications from this lower bound :

I:l'> For training data size N: increasing N can constantly decrease the prediction error.

ED For number of measurements m: While m contributes to a small prediction error, it is not decisive to

the ultimate performance of the prediction error, which is determined by N and r.

7{? At least m > r,c;n measurements are required to fully utilize the power of entangled data



Transition role of entangled data

We show that [5] : Assuming the training error is less than ¢, the averaged prediction error is lower bounded by

g2 ( N - min{m/(rc,), rn}
i\t

EyEsRy(Vs) = Q (— o )) (c1 = B(2"/&%))
C2

The implications from this lower bound :

l:|'> For query complexity mN: The lower bound of query complexity for achieving sufficiently small prediction
error is Q(4"r/&2).

* When r = 1, this matches the optimal lower bound, for quantum state tomography

with single-copy non-adaptive measurements [6].
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[6] Lowe, Angus, et al. "Lower bounds for learning quantum states with single-copy measurements.” ArXiv:2207.14438 (2022).
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Proof ideas: Discretizing the hypothesis space

Aim: learning fy = Tr(UTOUp) from hypothesis set

F ={fy(p) =Tr(VToVvp)|V € SU(d)}

This task is hard when F contains a large amount of very different operators!

If,> Solution: discretizing the hypothesis set by constructing the e-packing

4 N\

Definition (e-packing): For a given set of functionals F and a distance metric o on this set, the e-packing M. (F, o) is a
discrete subset of F whose elements are guaranteed to be distant from each other by a distance greater than or equal 2.

Namely, for any element f;, f, € M.(F, 0), the distance between f; and f, satisfies o(fy, f;) = 2e.

* The points in the e-packing are well distinguished!




Proof ideas: Information theoretical bound

Null hypothesis
Randomly choose X = x € X, (f;, = Tr(U,'CrOpr)) P

R _ Y(hs) =X
01 = (011,°**, 01m) g
02 = (021,"**, 02m) @ hS .
0 : @ testing
e oy = (On1,***, Onm) W(hs) = X
Measurement outputs
{1,:--,|M,.|}: the index set related to M, ] Alternati\{e
hypothesis
........................ P =
decoding .
> X =W(hy) Bob |
..... /_\u pper bounding the mutual information 1(X; X)

U X)+ log 2)
082

lower bounding the cardinality of 2e-packing X,
v (independent with r, m, N)

reduce to

EyEsRy(Vs) = &2 (1
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Proof ideas: Bounding the mutual information I1(X; X)

4 R ] ] )
Lemma 3 (Upper bound of the mutual information I(X; X)). The average of mutual information over the
.. N .
training states {pj}j=1 yields
. ~ (4mé?
IEpl,...,pNI(X; X) < N - min 7 ,71log(d) ¢.
- J

Intuitive understanding about the term min {T—f,rlog(d)} through Markov chain X - (Ux® I)|y;) — o; — X (N =1)

7;/.\( I(X;)?) < I(X;oj) < 4:”;2:

I:D Increasing the number of measurements enabling more information extraction

|:{> A large r decreases the information ‘density’ of the output states, and hence decreases
the extracted information amount by single measurement.

7,{\( 1(X;X) < I1(X; (Ux® D|y;)) < rlog(d) : The information of the target unitary U contained in a single output
state is limited. Meanwhile, a highly entangled output state contains more information about U than a lowly
entangled output state.



The lower bound for POVM with /-outcome

\

p
Theorem (Lower bound of EyEsR;(Vs) ). Let {fo} be a 2e-packing of the function class F in the p-metric.

xEXZ

Denoting & = 4,/2d(d + 1)¢, the averaged risk function EyEgRy (V) is lower bounded by

&2 min{ c;mé&?/r(d + 1) ,rlog(d)} + log(2)
FuksRolVs) 2 5@+ D (1 ) EE) )

POVM with £-outcome

+ Null hypothesis
Randomly choose X = x € X, (f, = Tr(UxOpry

S

01 = (011,°**, 01m) (k) = X

Q 0; = (021»"'»02111) hS

|::> ® testing

W(hs) # X

oy = (ON1,***, Onm)

= Measurement outputs

Sy = {piie :
P iJi=1 : Alternative
[ Xoe ={1,, | M5, |}: the index set related to My, ] hypothesis

o= U

&’ minfc 7"152.7”\,' mé&?¢/r(d + 1),rlog(d)} + log(2
B> EyEsRy (V) > ( _ minfeyme?/r,zymé*¢/r(d + 1), log(d)} + log( ))
8d(d +1) log(|22¢1)

* Increasing the number outcomes of POVM can exponentially reduce the number of measurements,
but can not remove the effect of entangled data.



Numerical simulation: task description

The substantial set of target operators: U, = {U € SU(d)|UTOU = |e;)(e;|: ) € [d]}

l:{) Let U* be the target unitary, learning U*TOU* = |ex+){(ex+| is equivalent to identifying the unknown index k* € [d].

* Construction of entangled data: [y;) = Z=1\/§|Ejk>x|Cjk)R where Yj_; i = 1

Observable 0 acts on the subsystem X I:D consider g; = Trg (|¢j)(1/)j|) = Yk=1 Cjk|fjk)(€jk |

m
Jike

m
k=1

r

Mixed states set: S = {a = ch exk)) (€xiiy| 1 T € Sav|c) = (Ver, -+, /er) T €SUM), lexmy) € HX}ED U*ajU*T l:{) 0j =

k=1

GIRONE e i
Collect the measurement outputs {(01 3290 5 D )}k | over all possible index k € [d].

N

A 2
k is determined by minimizing: % = arg min (o(-k) — Oj)
ke[d] J



Numerical simulation: task description

* Conditions for correctly Identifying k* (Training mixed states 0; = Yf=1 x| &) |)

& The states set {|Ejk)(€jk|}7;::1 contains the target operator U*TOU* = |e;)(e;|

(£ The measurement outputs {Oj}?]=1 closely approximate the corresponding Schmidt

coefficient c;. of the operator U*TOU* = |e; )es| € {|€jk)(€jk|}j;::1
* Two extreme casesof r =1andr =d when N = 1:

@ r=1,N=1 (c;1 =1):
1E11)(&11] # |exNer|: the output o4 IS always 0
1E110¢&11] = |ex ) ex|: few number of measurements can identify the target index k*.

& r=16,N=1 (Ec¢y = 1/d).
lex e | € {|Ejk)(fjk|}g=1: the output o, is always nonzero, but a large number of measurements

IS required to identify the target index k*.



Numerical results

Learning a 4-qubit unitary U
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Simulation results with independent training states.
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Questions & Answers!

Xinbiao Wang

Email: wangxb08@whu.edu.cn



