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Quantum machine learning (QML)

|𝜓𝑗⟩ ⋮ ⋮

Classical computer

Classification (for Mnist or

phase)

Application
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Optimizer

update parameters

Unitary compiling

Post-processing

(or measurements)

Quantum-classical hybrid



Quantum machine learning (QML)

Prediction error: the ability to accurately make predictions on unseen data

Evaluation metric for quantum learning models

Sample complexity: the training data size used by the learning algorithm

Query complexity: the number of total copies of the input states used by the learning algorithm
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A general formalism for quantum machine learning models

• the type of states

• the type of measurement done by the learner

• the type of quantum circuits used by the learner

Modifying any one of these parameters can change the quantum learning model!



The power of entanglement in QML

Most quantum learning algorithms with quantum advantages share the common features: entanglement!

Using entanglement in 

quantum dynamics [3]

Using entanglement in 

quantum measurements [1,2]

⋮

⋮

𝜌

𝜌

: Clliford gate

Predicting for 

any 𝑂:

Tr(𝜌𝑂)

[1] Huang, Hsin-Yuan, et al. "Quantum advantage in learning from experiments." Science 376.6598 (2022): 1182-1186. 

[2] Huang, Hsin-Yuan, et al. “Information-theoretic bounds on quantum advantage in machine learning.” Physical Review Letters (2021)

[3] Zhuang, Quntao,et al. "Physical-layer supervised learning assisted by an entangled sensor network." Physical Review X (2019)
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Entangled data in QML

How about the case when incorporating entanglement into training data? 

unitary

𝑉∗
=

Learned

Entangled states

ℋ𝒳

ℋℛ

⊗

ℋ𝒳

ℋℛ

⊗

⋯

|𝜓1⟩

|𝜓𝑁⟩

Output state

⋯ ⋯

(𝑈𝒳 ⊗ 𝕝)|𝜓𝑗⟩ (𝑉𝒳 ⊗ 𝕝)|𝜓𝑗⟩

[4] shows the using entangled data can exponentially reduce the sample complexity for achieving zero 

prediction error.

Perfect training (zero training error):

𝜓𝑗 𝑉𝒳
†𝑈𝒳 ⊗ 𝕝 𝜓𝑗

2
= 1

[4] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022)
5

Training dataset:

Entangled states:

𝑈𝒳 ∈ 𝐻 𝑉𝒳 ∈ 𝐻

Target unitary Hypothesis

Hypothesis set 𝑯

⋯

𝑛-qubit (𝑑 = 2𝑛)

Risk function:

Lower bound:



Entangled data in QML

Caveats in previous work:

How about the power of entangled data in a more realistic setting? 
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(1) Infinite number of measurements 

(2)  Coherent learning protocol

(3) Perfect training assumption（zero training error）



Realistic problem setting
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Learning task: 𝑓𝑈(|𝜓 ⟩) = 𝑇𝑟(𝑈|𝜓⟩⟨𝜓|𝑈†𝑂) (We adopt projective measurement 𝑂 = |𝑜⟩⟨𝑜|)

Risk function:  𝑅𝑈 𝑉𝒮 = 𝔼 𝜓 ∼𝐻𝑎𝑎𝑟𝑇𝑟 𝑂 𝑉𝒮 𝜓 𝜓 𝑉𝒮
† − 𝑈 𝜓 𝜓 𝑈†
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Training Dataset:  𝒮 = |𝜓𝑗⟩, 𝑜𝑗): |𝜓𝑗⟩ ∈ ℋ𝒳ℛ, 𝑜𝑗 =
1

𝑚
σ𝑘=1
𝑚 𝑜𝑗𝑘

𝑗=1

𝑁



In the setting of finite number of measurements：Does entangled data contribute to quantum advantage？

We show that [5]：Assuming the training error is less than 𝜀, the averaged risk function is lower bounded by

The implications from this lower bound in terms of  𝑟, 𝑁,𝑚：

For Schmidt rank 𝒓: Entangled data has a dual effect in the prediction error：

Positive effect: For a large number of measurements 𝑚 ≥ 𝑐1𝑟
2𝑛,

[5] Wang, Xinbiao ,  et al. “Transition role of entangled data in quantum machine learning.” Arxiv:2306_03481 (2023) 

Transition role of entangled data

entangled data leads to a small prediction error. 

𝑟 = 2𝑛 can achieve an exponential reduction in terms of training data size 𝑁 compared with 𝑟 = 1.
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𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥ Ω
ǁ𝜀2

4𝑛
1 −

𝑁 ⋅ min 𝑚/(𝑟𝑐1), 𝑟𝑛

2𝑛𝑐2
( ǁ𝜀 = Θ(2𝑛𝜀)) 

This echoes with the result achieved in [4]

[4] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022)



In the setting of finite number of measurements：Does entangled data contribute to quantum advantage？

We show that [5]：Assuming the training error is less than 𝜀, the averaged risk function is lower bounded by

The implications from this lower bound：

For Schmidt rank 𝒓: Entangled data has a dual effect in the prediction error：

Negative effect: For a small number of measurements 𝑚 < 𝑐1𝑟
2𝑛,

[5] Wang, Xinbiao ,  et al. “Transition role of entangled data in quantum machine learning.” Arxiv:2306_03481 (2023) 

Transition role of entangled data

highly entangled data not only requires a large amount of quantum resource for preparing,
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𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥ Ω
ǁ𝜀2

4𝑛
1 −

𝑁 ⋅ min 𝑚/(𝑟𝑐1), 𝑟𝑛

2𝑛𝑐2
( ǁ𝜀 = Θ(2𝑛𝜀)) 

[4] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022)

but also leads to a large prediction error.



We show that [5]：Assuming the training error is less than 𝜀, the averaged prediction error is lower bounded by

The implications from this lower bound：

Transition role of entangled data

For number of measurements 𝒎: While 𝑚 contributes to a small prediction error, it is not decisive to 

the ultimate performance of the prediction error, which is determined by 𝑁 and 𝑟.

At least m ≥ 𝑟2𝑐1𝑛 measurements are required to fully utilize the power of entangled data

For training data size 𝑵: increasing 𝑁 can constantly decrease the prediction error.

(𝑐1 = Θ(2𝑛/ ǁ𝜀2))
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𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥ Ω
ǁ𝜀2

4𝑛
1 −

𝑁 ⋅ min 𝑚/(𝑟𝑐1), 𝑟𝑛

2𝑛𝑐2



We show that [5]：Assuming the training error is less than 𝜀, the averaged prediction error is lower bounded by

The implications from this lower bound：

For query complexity 𝒎𝑵: The lower bound of query complexity for achieving sufficiently small prediction 

error is Ω(4𝑛𝑟/ ǁ𝜀2).

[6] Lowe, Angus, et al. "Lower bounds for learning quantum states with single-copy measurements." ArXiv:2207.14438 (2022).

Transition role of entangled data

(𝑐1 = Θ(2𝑛/ ǁ𝜀2))
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𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥ Ω
ǁ𝜀2

4𝑛
1 −

𝑁 ⋅ min 𝑚/(𝑟𝑐1), 𝑟𝑛

2𝑛𝑐2

Dual problem

When 𝑟 = 1 , this matches the optimal lower bound, for quantum state tomography 

with single-copy non-adaptive measurements [6].           

𝑈†|𝑜⟩⟨𝑜|𝑈

𝑇𝑟ℛ |𝜓𝑗⟩⟨𝜓𝑗|

= |𝜉𝑗⟩⟨𝜉𝑗|

tomography pure state 𝑈†|𝑜⟩⟨𝑜|𝑈)

Ω(4𝑛/ℓ ǁ𝜀2).

ℓ: number of     

outcomes

Lower bound for 
pure state:

ℋ𝒳

ℋℛ

⊗|𝜓𝑗⟩

𝑈†|𝑜⟩⟨𝑜|𝑈

learning 𝑈†|𝑜⟩⟨𝑜|𝑈



Proof ideas: Discretizing the hypothesis space

12

Aim: learning 𝑓𝑈 = 𝑇𝑟(𝑈†𝑂𝑈𝜌) from hypothesis set  

This task is hard when ℱ contains a large amount of very different operators!

Solution: discretizing the hypothesis set by constructing the 𝜀-packing   

Definition (𝜺-packing): For a given set of functionals ℱ and a distance metric 𝜚 on this set, the 𝜀-packing ℳ𝜀(ℱ, 𝜚) is a 

discrete subset of ℱ whose elements are guaranteed to be distant from each other by a distance greater than or equal 2𝜀. 

Namely, for any element 𝑓1, 𝑓2 ∈ ℳ𝜀 ℱ, 𝜚 , the distance between 𝑓1 and 𝑓2 satisfies 𝜚 𝑓1, 𝑓2 ≥ 2𝜀.

ε-packing

𝑓𝑈 ε

: 𝑓𝑈 = 𝑇𝑟(𝑈†𝑂𝑈𝜌)

The points in the ε-packing are well distinguished!

ℱ = {𝑓𝑉(𝜌) = 𝑇𝑟(𝑉†𝑂𝑉𝜌)|𝑉 ∈ 𝕊𝕌 𝑑 }



Proof ideas: Information theoretical bound
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𝒳2𝜀 = 1,⋯ , ℳ2𝜀 : the index set related to ℳ2𝜀

Randomly choose 𝑋 = 𝑥 ∈ 𝒳2𝜀 (𝑓𝑥 = 𝑇𝑟(𝑈𝑥
†𝑂𝑈𝑥𝜌) )

𝒮𝜌 = 𝜌𝑖 𝑖=1
𝑁

𝜌𝑖 ⋮ ⋮ 𝑂

𝑜1 = (𝑜11, ⋯ , 𝑜1𝑚)

𝑜2 = (𝑜21, ⋯ , 𝑜2𝑚)

𝑜𝑁 = (𝑜𝑁1, ⋯ , 𝑜𝑁𝑚)
⋮

ℎ𝒮

Null hypothesis

Alternative

hypothesis

Ψ ℎ𝒮 = 𝑋

Ψ ℎ𝒮 ≠ 𝑋

testing

Measurement outputs

𝑈𝑥𝑈𝑥 2ε

Alice          𝑋 𝑈𝑋
encoding

𝒮
decoding

𝑋 = Ψ ℎ𝒮 Bob

𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥ 𝜀2 1 −
𝐼 𝑋; 𝑋 + log 2

log 𝒳2𝜀

upper bounding the mutual information 𝐼 𝑋; 𝑋

reduce to

(independent with 𝑟,𝑚,𝑁)

lower bounding the cardinality of 2ε-packing 𝒳2𝜀



Proof ideas: Bounding the mutual information 𝐼(𝑋; 𝑋)
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Lemma 3 (Upper bound of the mutual information 𝑰(𝑿; 𝑿)). The average of mutual information over the 

training states 𝜌𝑗 𝑗=1

𝑁
yields

𝔼𝜌1,⋯,𝜌𝑁𝐼 𝑋;
𝑋 ≤ 𝑁 ⋅ min

4𝑚 ǁ𝜀2

𝑟𝑑
, 𝑟 log 𝑑 .

Intuitive understanding about the term min
4𝑚𝜀2

𝑟𝑑
, 𝑟 log 𝑑 through Markov chain 𝑋 → (𝑈𝑋⊗ 𝕀)|𝜓𝑗⟩ → 𝑜𝑗 → 𝑋 (𝑁 = 1):

𝐼 𝑋; 𝑋 ≤ 𝐼 𝑋; 𝑜𝑗 ≤
4𝑚𝜀2

𝑟𝑑
:

Increasing the number of measurements enabling more information extraction

A large 𝑟 decreases the information ‘density’ of the output states, and hence decreases 

the extracted information amount by single measurement.

𝐼 𝑋; 𝑋 ≤ 𝐼 𝑋; (𝑈𝑋⊗ 𝕀)|𝜓𝑗⟩ ≤ 𝑟 log 𝑑 : The information of the target unitary 𝑈 contained in a single output 

state is limited. Meanwhile, a highly entangled output state contains more information about 𝑈 than a lowly 

entangled output state.



The lower bound for POVM with ℓ-outcome
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Theorem (Lower bound of 𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ). Let 𝑓𝑈𝑥 𝑥∈𝒳2𝜀
be a 2𝜀-packing of the function class ℱ in the 𝜚-metric. 

Denoting 𝜺 = 𝟒 𝟐𝒅(𝒅 + 𝟏)𝜺, the averaged risk function 𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 is lower bounded by

𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥
ǁ𝜀2

8𝑑 𝑑 + 1
1 −

min{ 𝑐1𝑚 ǁ𝜀2/𝑟(𝑑 + 1) , 𝑟 log 𝑑 } + log 2

log( 𝒳2𝜀 )

POVM with ℓ-outcome

𝔼𝑈𝔼𝒮𝑅𝑈 𝑉𝒮 ≥
ǁ𝜀2

8𝑑 𝑑 + 1
1 −

min{ 𝑐1𝑚 ǁ𝜀2/𝑟, 𝑐1𝑚 ǁ𝜀2ℓ/𝑟(𝑑 + 1), 𝑟 log 𝑑 } + log 2

log(|𝒳2𝜀|)

Increasing the number outcomes of POVM can exponentially reduce the number of measurements, 
but can not remove the effect of entangled data.



Numerical simulation: task description
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Construction of target unitary set: 𝒰 = 𝑈 ∈ 𝕊𝕌 𝑑 𝑈1𝑗 = 𝑒𝑖𝛾𝑗 , 𝛾𝑗 ∈ ℝ, 𝑗 ∈ 𝑑 Observable: 𝑂 = |0⟩⟨0| ⊗𝑛

The substantial set of target operators: 𝒰𝑂 = 𝑈 ∈ 𝕊𝕌 𝑑 𝑈†𝑂𝑈 = |𝑒𝑗⟩⟨𝑒𝑗|: 𝑗 ∈ [𝑑]

Let 𝑈∗ be the target unitary, learning 𝑈∗†𝑂𝑈∗ = |𝑒𝑘∗⟩⟨𝑒𝑘∗| is equivalent to identifying the unknown index 𝑘∗ ∈ 𝑑 .

Construction of entangled data: 𝜓𝑗 = σ𝑘=1
𝑟 𝑐𝑗𝑘 𝜉𝑗𝑘 𝒳

𝜍𝑗𝑘 ℛ
where σ𝑘=1

𝑟 𝑐𝑗𝑘 = 1

Observable 𝑂 acts on the subsystem 𝒳 consider 𝜎𝑗 = 𝑇𝑟ℛ 𝜓𝑗 𝜓𝑗 = σ𝑘=1
𝑟 𝑐𝑗𝑘 𝜉𝑗𝑘 ⟨𝜉𝑗𝑘 |

Mixed states set: 

Collect the measurement outputs 𝑜1
𝑘
, ⋯ , 𝑜𝑁

𝑘

𝑘=1

𝑑
over all possible index 𝑘 ∈ 𝑑 .

𝑈∗𝜎𝑗𝑈
∗† 𝑜𝑗 = 

𝑘=1

𝑚
𝑜𝑗𝑘

𝑚

𝑘 is determined by minimizing: 



Numerical simulation: task description
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Conditions for correctly Identifying 𝑘∗

The states set |𝜉𝑗𝑘⟩⟨𝜉𝑗𝑘| 𝑗,𝑘=1

𝑁,𝑟
contains the target operator 𝑈∗†𝑂𝑈∗ = |𝑒𝑘

∗⟩⟨𝑒𝑘
∗|

The measurement outputs 𝑜𝑗 𝑗=1

𝑁
closely approximate the corresponding Schmidt 

coefficient 𝑐𝑘
∗ of the operator 𝑈∗†𝑂𝑈∗ = |𝑒𝑘

∗⟩⟨𝑒𝑘
∗| ∈ |𝜉𝑗𝑘⟩⟨𝜉𝑗𝑘| 𝑗,𝑘=1

𝑁,𝑟

Two extreme cases of 𝑟 = 1 and 𝑟 = 𝑑 when 𝑁 = 1:

𝑟 = 1, 𝑁 = 1 (𝑐11 = 1):  

𝜉11 𝜉11 ≠ |𝑒𝑘
∗⟩⟨𝑒𝑘

∗|: the output 𝑜1 is always 0

𝜉11 𝜉11 = |𝑒𝑘
∗⟩⟨𝑒𝑘

∗|: few number of measurements can identify the target index 𝑘∗.

𝑟 = 16, 𝑁 = 1 (𝔼𝑐𝑗𝑘 = 1/𝑑):  

|𝑒𝑘
∗⟩⟨𝑒𝑘

∗| ∈ |𝜉𝑗𝑘⟩⟨𝜉𝑗𝑘| 𝑗,𝑘=1

𝑁,𝑟
: the output 𝑜1 is always 𝑛𝑜𝑛𝑧𝑒𝑟𝑜, but a large number of measurements

is required to identify the target  index 𝑘∗.

(Training mixed states 𝜎𝑗 = σ𝑘=1
𝑟 𝑐𝑗𝑘 𝜉𝑗𝑘 ⟨𝜉𝑗𝑘 |) 
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Learning a 4-qubit unitary 𝑼

Numerical results

Simulation results with independent training states.



Questions & Answers!
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