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QML routine: Learn unitary

• Target unitary V not known directly, only its action on L training states    
drawn from distribution W:

• Goal: Find

• Training: Optimize fidelity on training data

• Routine used for quantum compiling, learning quantum dynamics, 
quantum autoencoder, …
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Task: Given target unitary V, represent it with M parameter unitary U(θ)



Challenge 1: Converge to global minima

• Train circuit parameters θ (using L training 
datapoints) by minimizing training cost

• Success depends on circuit parameters M
– Underparameterized models swamped with bad local 

minima (far away from global minima)

→Optimization gets stuck in bad solutions

– Overparameterized: Local minimas become global minimas

→Easy to find good solutions

• Critical number of circuit parameters Mc(L) to 
overparameterize?
– Mc(L=1) from rank of “quantum Fisher information metric”

– What is Mc (L) for L>1?
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Challenge 2: Generalization

• Generalization: Performance of trained model on 
unseen test data (test error)

• More training data L→ better test error

• Loose uniform generalization bounds: 

• In practice: Numerics suggest we can achieve Lc =const
data to generalize, but not clear when or why

• Can we get accurate values for Lc 
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Our contributions

• We give theory of overparameterization and 
generalization for learning unitaries via 

“Data quantum Fisher information metric” (DQFIM)

• Explain generalization from few data via rank of 
DQFIM and dynamical Lie algebra

• Surprising implications:

– Symmetries can hurt generalization

– Out-of-distribution learning (learning from “wrong 
distribution”) can improve generalization
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Data quantum Fisher information metric

• Quantum Fisher information metric: Describes how change in parameter θ
affects quantum state (“Hessian of fidelity”)

• Maximal rank of          determines overparameterization 

• Problem: Incomplete, does not characterize learning from L>1 datapoints

• Solution: We introduce “Data quantum Fisher information metric” (DQFIM)

• “Quantum Fisher information metric for parameterized unitary U(θ) projected 
onto dataset      ”

• L=1 reduces to quantum Fisher information metric
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How many circuit parameters M to overparameterize?

• Increase M until rank of DQFIM becomes maximal, at Mc(L): Here, variation of 
θ explores every direction of unitary space projected onto data

→ Critical number of circuit parameters Mc(L) to overparameterize

• Mc(L)~RL

7

OverparameterizedUnderparameterized

Mc(L=1)

Mc(L=∞)

State spaceParameter space

Training error

Underparameterized

Overparameterized

Overparameterization and rank of DQFIM



Generalization and rank of DQFIM

• Dataset size Lc to generalize?

• Rank DQFIM RL describes degrees of freedom we can learn with dataset size L

• Increase L until rank of DQFIM RL becomes maximal, at Lc 

• Maximal rank of DQFIM→ Dataset has complete information → Generalisation

(We assume data without noise)

• Approximation:
– Lc ~ 2*”Total degrees of freedom”/ “Degrees of freedom per state”
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Learning unitaries and dynamical Lie algebra

• Dynamical Lie algebra characterizes dimensionality of unitary

• We prove upper bounds on rank RL in terms of dynamical Lie algebra

→ Polynomial sized dynamical Lie algebra implies generalisation with 
polynomial depth and dataset size
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Symmetries and QML
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• QML problems with symmetries

→ Encode symmetries into ansatz circuit and data→Small
dynamical Lie algebra

• Previous numerics found Lc=const data to generalize

• Explained with DQFIM: Small dynamical Lie algebra 
implies low rank of DQFIM
→
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Are symmetries always good?
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• Symmetry operator P 

• Parameterized unitary respects symmetry

• Data
– Symmetric

– Non-symmetric

• Generalization for excitation number symmetry:
– Symmetric data: Lc ~ N

– Non-symmetric: Lc ~ 2 datapoints → no symmetry better!

→ Why? Non-symmetric data “explores” more degrees of 
freedom of unitary

• Catch: Non-symmetric data needs more circuit parameters Mc

C. Matthias et al. "Generalization in quantum machine learning from few training data." Nature communications 13.1 (2022): 4919.
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We also show: Out-of-distribution learning (train and test data from different distributions) can 
generalize better than in-distribution (train and test data from same distribution)

→ Encoding symmetry of problem onto data may hurt generalization!



Conclusion

• “Data quantum Fisher information metric” (DQFIM) 
provides complete theory for generalisation and 
overparameterization for learning unitaries

• More symmetries may need more data to generalise

• Out-of-distribution learning can be superior

• Next
– Extension beyond learning unitary problem

– Effect of noise

– Classify symmetries with constant dataset size for generalisation?

– Phase transition in generalization?

– Combine with information-theoretic perspectives?
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