

Imperial College London

Generalization with quantum geometry for learning unitaries

Tobias Haug 20.11.2023

T. Haug, M.S. Kim, Generalization with quantum geometry for learning unitaries arXiv:2303.13462 (2023) 1 T. Haug, K. Bharti, M.S. Kim, Capacity and quantum geometry of parametrized quantum circuits PRX Quantum 2 (4), 040309 (2021)

QML routine: Learn unitary

Task: Given target unitary V, represent it with **M** parameter unitary $U(\theta)$

• Target unitary V not known directly, only its action on L training states $|\psi_{\ell}\rangle \in W$ drawn from distribution W: $S_L = \{|\psi_{\ell}\rangle, V |\psi_{\ell}\rangle\}_{\ell=1}^L$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 \mathcal{E}

 \mathcal{D}

2

 $|0\rangle$

 $|0\rangle$

- Goal: Find $U(\boldsymbol{\theta}) \ket{\psi_\ell} = V \ket{\psi_\ell}$
- Training: Optimize fidelity on training data $C_{\text{train}}(\boldsymbol{\theta}, S_L) = 1 - \frac{1}{L} \sum_{\ell=1}^{L} |\langle \psi_{\ell} | V^{\dagger} U(\boldsymbol{\theta}) | \psi_{\ell} \rangle|^2$
- Routine used for quantum compiling, learning quantum dynamics, quantum autoencoder, ...
 Quantum Computer (U, Va(a))
 (0)

Input: U

Gate sequence $V_k(\alpha)$

Challenge 1: Converge to global minima

- Train circuit parameters $\boldsymbol{\theta}$ (using L training datapoints) by minimizing training cost $C_{ ext{train}}(\boldsymbol{\theta})$
- Success depends on circuit parameters M
 - Underparameterized models swamped with bad local minima (far away from global minima)
 - \rightarrow Optimization gets stuck in bad solutions
 - Overparameterized: Local minimas become global minimas
 →Easy to find good solutions
 - Critical number of circuit parameters M_c(L) to overparameterize?
 - M_c(L=1) from rank of "quantum Fisher information metric"
 - What is M_c (L) for L>1?

X. You, S. Chakrabarti, and X Wu. "A convergence theory for over-parameterized variational quantum eigensolvers." *arXiv:2205.12481* (2022). E. Anschuetz, and B. Kiani. "Quantum variational algorithms are swamped with traps." *Nature Communications* 13.1 (2022) M. Larocca, N. Ju, D. Garcia-Martin, P. J. Coles, and M. Cerezo, Nature Computational Science 3, 542 (2023) T. Haug, K. Bharti, M.S. Kim, Capacity and quantum geometry of parametrized quantum circuits PRX Quantum 2 (4), 040309 (2021)

Challenge 2: Generalization

• Generalization: Performance of trained model on unseen test data (test error)

$$C_{\text{test}}(\boldsymbol{\theta}, W) = 1 - \mathbb{E}_{|\psi\rangle \in W}[|\langle \psi | V^{\dagger} U(\boldsymbol{\theta}) | \psi \rangle|^{2}]$$

• More training data $L \rightarrow$ better test error

E. Gil-Fuster, J. Eisert, and C. Bravo-Prieto, Understanding quantum machine learning also requires rethinking generalization, arXiv:2306.13461
L. Banchi, J. Pereira, and S. Pirandola. "Generalization in quantum machine learning: A quantum information standpoint." *PRX Quantum* 2.4 (2021)
C. Matthias et al. "Generalization in quantum machine learning from few training data." *Nature communications* 13.1 (2022): 4919.

Our contributions

- We give theory of overparameterization and generalization for learning unitaries via "Data quantum Fisher information metric" (DQFIM)
- Explain generalization from few data via rank of ٠ DQFIM and dynamical Lie algebra
- Surprising implications: •
 - Symmetries can hurt generalization
 - Out-of-distribution learning (learning from "wrong distribution") can improve generalization

5 T. Haug, M.S. Kim, Generalization with quantum geometry for learning unitaries arXiv:2303.13462 (2023) T. Haug, K. Bharti, M.S. Kim, Capacity and quantum geometry of parametrized quantum circuits PRX Quantum 2 (4), 040309 (2021)

Data quantum Fisher information metric

• Quantum Fisher information metric: Describes how change in parameter θ affects quantum state ("Hessian of fidelity") Parameter space $\mathcal{F}(\theta)$ State space

 \bullet_{θ_2}

 $\mathcal{F}_{nm}(|\psi(\boldsymbol{\theta})\rangle) = 4\text{Re}(\langle\partial_n\psi|\partial_m\psi\rangle - \langle\partial_n\psi|\psi\rangle\langle\psi|\partial_m\psi\rangle) \overset{\boldsymbol{\theta}_1}{\blacktriangle}$

$$\langle \psi(\boldsymbol{\theta}) | \psi(\boldsymbol{\theta} + \mathrm{d}\boldsymbol{\theta}) \rangle |^2 = 1 - \frac{1}{4} \mathcal{F}_{nm} \mathrm{d}\boldsymbol{\theta}^n \mathrm{d}\boldsymbol{\theta}^m$$

- Maximal rank of \mathcal{F}_{nm} determines overparameterization
- Problem: Incomplete, does not characterize learning from L>1 datapoints
- Solution: We introduce "Data quantum Fisher information metric" (DQFIM)

 $Q_{nm}(S_L, U(\boldsymbol{\theta})) = 4\text{Re}(\text{tr}(\partial_n U^{\dagger} \tilde{\Pi}_L \partial_m U) - \text{tr}(\partial_n U^{\dagger} \tilde{\Pi}_L U)\text{tr}(U^{\dagger} \tilde{\Pi}_L \partial_m U))$

- "Quantum Fisher information metric for parameterized unitary $U(\theta)$ projected onto dataset $\tilde{\Pi}_{\rm L}$ "
- *L=1* reduces to quantum Fisher information metric

T. Haug, and M. S. Kim. "Generalization with quantum geometry for learning unitaries." *arXiv:2303.13462* (2023). T. Haug, K. Bharti, M.S. Kim *Capacity and quantum geometry of parametrized quantum circuits*, PRX Quantum 2 (2021)

Overparameterization and rank of DQFIM

Parameter space_

 $\mathcal{F}(\boldsymbol{\theta})$

State space

How many circuit parameters **M** to overparameterize?

- Increase M until rank of DQFIM becomes maximal, at M_c(L): Here, variation of θ explores every direction of unitary space projected onto data
- \rightarrow Critical number of circuit parameters $M_c(L)$ to overparameterize

$$R_L = \max_{M \ge M_c, \theta} \operatorname{rank}[Q(S_L, U(\theta, M))]$$

• M_c(L)~R_L

Generalization and rank of DQFIM

- Dataset size *L_c* to generalize?
- Rank DQFIM R_L describes degrees of freedom we can learn with dataset size *L*
- Increase L until rank of DQFIM R_L becomes maximal, at L_c

 $R_{\infty} = \max_{L \ge L_{\rm c}} R_L(S_L, U)$

- Maximal rank of DQFIM→ Dataset has complete information → Generalisation (We assume data without noise)
- Approximation: $L_c \approx 2R_\infty/R_1$

- $L_c \sim 2^{*"}$ Total degrees of freedom"/ "Degrees of freedom per state"

Learning unitaries and dynamical Lie algebra

- Dynamical Lie algebra characterizes dimensionality of unitary
- We prove upper bounds on rank R_L in terms of dynamical Lie algebra

Theorem 1. The maximal rank R_L is bounded by the dimension of the dynamical Lie algebra (DLA)

 $R_L \le \dim(\mathfrak{g}), \qquad (10)$

where $\mathfrak{g} = \operatorname{span} \langle iH_1, \ldots, iH_K \rangle_{Lie}$ is generated by the repeated nested commutators of the generators H_k of $U(\boldsymbol{\theta})$.

→ Polynomial sized dynamical Lie algebra implies generalisation with polynomial depth and dataset size

 $\dim(\mathfrak{g}) \sim \operatorname{poly}(N) \rightarrow \frac{M_{c} \sim \operatorname{poly}(N)}{L_{c} \sim \operatorname{poly}(N)}$

Symmetries and QML

- QML problems with symmetries
- → Encode symmetries into ansatz circuit and data→Small dynamical Lie algebra
- Previous numerics found L_c=const data to generalize

• Explained with DQFIM: Small dynamical Lie algebra implies low rank of DQFIM

$$\rightarrow L_{\rm c} \approx 2R_{\infty}/R_1 = {\rm const}$$

C. Matthias et al. "Generalization in quantum machine learning from few training data." *Nature communications* 13.1 (2022): 4919. J. Gibbs, et al. "Dynamical simulation via quantum machine learning with provable generalization"*arXiv:2204.10269*

M. Larocca, et al. "Group-invariant quantum machine learning." *PRX Quantum* 3.3 (2022): 030341.

J.J. Meyer, et al. "Exploiting symmetry in variational quantum machine learning." PRX Quantum 4.1 (2023)

Are symmetries always good?

- Symmetry operator P
- Parameterized unitary respects symmetry $[U(oldsymbol{ heta}),P]=0$
- Data
 - Symmetric $P \ket{\psi_i} = \ket{\psi_i}$
 - Non-symmetric $P\left|\psi_{i}
 ight
 angle
 eq \left|\psi_{i}
 ight
 angle
 eq \left|\psi_{i}
 ight
 angle
 eq$
- Generalization for excitation number symmetry:
 - Symmetric data: $L_c \sim N$
 - − Non-symmetric: $L_c \sim 2$ datapoints → no symmetry better!

→ Encoding symmetry of problem onto data may hurt generalization!

- → Why? Non-symmetric data "explores" more degrees of freedom of unitary
- Catch: Non-symmetric data needs more circuit parameters M_c

We also show: Out-of-distribution learning (train and test data from different distributions) can generalize better than in-distribution (train and test data from same distribution)

C. Matthias et al. "Generalization in quantum machine learning from few training data." *Nature communications* 13.1 (2022): 4919. J. Gibbs, et al. "Dynamical simulation via quantum machine learning with provable generalization"*arXiv:2204.10269*

Conclusion

- "Data quantum Fisher information metric" (DQFIM) provides complete theory for generalisation and overparameterization for learning unitaries
- More symmetries may need more data to generalise
- Out-of-distribution learning can be superior

• Next

- Extension beyond learning unitary problem
- Effect of noise
- Classify symmetries with constant dataset size for generalisation?
- Phase transition in generalization?
- Combine with information-theoretic perspectives?

T. Haug, M.S. Kim, Generalization with quantum geometry for learning unitaries arXiv:2303.13462 (2023) ¹⁴ T. Haug, K. Bharti, M.S. Kim, Capacity and quantum geometry of parametrized quantum circuits PRX Quantum 2 (4), 040309 (2021)