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Variational Quantum Algorithms

I Variational Quantum Algorithms are proposed to fit the current limitations of quantum hardware
I Quantum hardware is used to prepare a parameterized quantum circuit to construct a quantum

state
I The quantum state is optimized with respect to certain metric (e.g. energy)
I Quantum advantage is an open question
I Several optimization issues

I Circuit and sampling noise
I Gradient not always available
I Vanishing gradients / Barren Plateaus1
I Plethora of local minima2

An open question
How can we train VQAs better?

1Jarrod R. McClean et al. Nature Communications 9.1 (Nov. 2018),
2Eric R. Anschuetz and Bobak T. Kiani. (Sept. 2022). eprint: arXiv:2205.05786.
3Kishor Bharti et al. Reviews of Modern Physics 94.1 (Feb. 2022),
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Exploratory Landscape Analysis and Information Content

I Exploratory Landscape Analysis (ELA) is a numerical technique from classical optimization4

I ELA aims to efficiently extract properties of the landscape to be optimized by sampling
I Efficient = we need O(m) samples from the loss function, where m is the number of parameters

I ELA → ensure trainability, improve initialization, find suitable optimizer

Our approach
I We use Information Content (IC), a proxy for variability of the landscape
I We connect the expected norm of the gradient with features of the landscape
I Robust theoretical bounds and numerical checks

4Mario A. Muñoz, Michael Kirley, and Saman K. Halgamuge. IEEE Transactions on Evolutionary Computation 19.1 (2015),
Discover the world at Leiden University 3 / 9



Information Content

Computation
I Sample O(m) points and connect them

randomly through random walks
I Compute in the random walk

∆Ci =
C(~θi+1)−C(~θi)∥∥∥~θi+1−~θi

∥∥∥ .

I Discretize the walk to a sequence

φ(ε) =

{
sgn(∆Ci) if |∆Ci| > ε

� if |∆Ci| ≤ ε

I Compute the IC as

H(ε) =
∑
a6=b

−pab log6 (pab) ,

for ab = {−,�,+}2, with pab the
extimated probability of the sequence
(ab) in φ(ε)

Interpretation
I Value of IC

I Large IC means high variability in the
landscape

I Low IC means no change
I IC gives insights in the probability of

change
I Value of ε

I If ε is large, the landscape is flat (to this
scale)

I If ε is smal, variability is enforced
I ε provides insights in the value at which

the landscape is variable
I Combining the values of IC and ε we can

estimate the gradient norm, in average in
all directions
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Theoretical Results

Gradient norms are related to ε

Prob
(
E~θ

(
∇C(~θ) · ~δ

)
≤ ε

)
= ΦG

(
ε
√
m

‖∇C‖

)
, (1)

for ΦG the CDF of a normal distribution, and

‖∇C‖2 = E
(∥∥∥∇C(~θ)

∥∥∥2
)

Maximal IC
Let εM = argmaxε(H(ε)), then

‖∇C‖ ∈ Ω
(
εM

√
m
)

(2)

Sensitive IC
Let εS = min{ε > 0|H(ε) ≤ η}, then

‖∇C‖ ≤ εS
√
m

Φ−1
G (1− 3η/2)

. (3)
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Numerical experiments

I Experiments in known problems for barren
plateausa (up to shot noise).

I Same circuit, different (global / local)
observables show different regimes

I We match the theoretical results, while
numerical scaling factors are also available
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Numerical experiments

I Experiments in known problems for barren
plateaus.

I Same circuit, different (global / local)
observables show different regimes

I We match the theoretical results, while
numerical scaling factors are also available
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Global
2 layers fit: f(n) = 2−1.41n−0.68

4 layers fit: f(n) = 2−1.27n−1.09

6 layers fit: f(n) = 2−1.17n−1.68

8 layers fit: f(n) = 2−1.12n−1.85

10 layers fit: f(n) = 2−1.12n−1.82

12 layers fit: f(n) = 2−1.05n−2.26

14 layers fit: f(n) = 2−1.07n−2.14

16 layers fit: f(n) = 2−1.06n−2.1
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4 qubits fit: f−1(l) = −0.11 l2 + 3.5 l + 12.43

6 qubits fit: f−1(l) = −0.28 l2 + 9.94 l + 6.1

8 qubits fit: f−1(l) = 0.13 l2 + 7.98 l + 19.16

10 qubits fit: f−1(l) = 0.52 l2 + 5.89 l + 29.72

12 qubits fit: f−1(l) = 0.82 l2 + 5.04 l + 38.7

14 qubits fit: f−1(l) = 1.18 l2 + 3.04 l + 50.89
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2 layers fit: f−1(n) = 0.028 n2 + 3.299 n + 6.37

4 layers fit: f−1(n) = −0.244 n2 + 10.22 n− 12.96

6 layers fit: f−1(n) = −0.165 n2 + 11.519 n− 12.16

8 layers fit: f−1(n) = −0.298 n2 + 16.987 n− 28.13

10 layers fit: f−1(n) = −0.546 n2 + 25.627 n− 57.5

12 layers fit: f−1(n) = −0.34 n2 + 26.77 n− 59.65

14 layers fit: f−1(n) = 0.076 n2 + 27.997 n− 75.87

16 layers fit: f−1(n) = 0.123 n2 + 34.954 n− 108.92
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Conclusions

I We propose a data-driven method to study variational quantum algorithms
I Data-driven methods have a broader range of applicability than analytical methods
I We connect information content to the average norm of the gradient with analytical bounds
I We can characterize barren plateaus easily with remarkable accuracy
I Scaling prefactors are accessible for the first time
I Hopes for VQAs

I Learn landscapes before optimization
I Use suitable optimizers
I Estimate resources for successful optimization

The end
Thank you for your attention

Discover the world at Leiden University 8 / 9

Paper accessible here



Analyzing variational quantum landscapes with information
content

Adrián Pérez-Salinas
In collaboration with X. Bonet-Monroig, H. Wang

QTML 2023
November 24th 2023

Instituut-
Lorentz

Adrián Pérez-Salinas, Hao Wang, and Xavier Bonet-Monroig. (2023). arXiv: 2303.16893 [quant-ph]

Discover the world at Leiden University 9 / 9

https://arxiv.org/abs/2303.16893

	Introduction
	Information Content and Results
	Conclusions and outlook

