Analyzing variational quantum landscapes with information content

Adrián Pérez-Salinas In collaboration with X. Bonet-Monroig, H. Wang

QTML 2023 November 24th 2023

 \langle a Q a' \rangle

メロトメ 倒 トメ ミトメ ミト

Variational Quantum Algorithms

- In Variational Quantum Algorithms are proposed to fit the current limitations of quantum hardware
- I Quantum hardware is used to prepare a parameterized quantum circuit to construct a quantum state
- \blacktriangleright The quantum state is optimized with respect to certain metric (e.g. energy)
- \triangleright Quantum advantage is an open question
- \blacktriangleright Several optimization issues
	- \blacktriangleright Circuit and sampling noise
	- \triangleright Gradient not always available
	- \blacktriangleright Vanishing gradients / Barren Plateaus¹
	- \blacktriangleright Plethora of local minima²

An open question

How can we train VQAs better?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end$

- ¹ Jarrod R. McClean et al. Nature Communications 9.1 (Nov. 2018),
- ²Eric R. Anschuetz and Bobak T. Kiani. (Sept. 2022). eprint: $arXiv:2205.05786$.

³Kishor Bharti et al. Reviews of Modern Physics 94.1 (Feb. 2022),

Exploratory Landscape Analysis and Information Content

- Exploratory Landscape Analysis (ELA) is a numerical technique from classical optimization⁴
- \blacktriangleright ELA aims to efficiently extract properties of the landscape to be optimized by sampling
	- Efficient = we need $\mathcal{O}(m)$ samples from the loss function, where m is the number of parameters
- \blacktriangleright ELA \rightarrow ensure trainability, improve initialization, find suitable optimizer

Our approach

- \triangleright We use Information Content (IC), a proxy for variability of the landscape
- \blacktriangleright We connect the expected norm of the gradient with features of the landscape
- \blacktriangleright Robust theoretical bounds and numerical checks

⁴ Mario A. Muñoz, Michael Kirley, and Saman K. Halgamuge. IEEE Transactions on Evoluti[ona](#page-1-0)r[y](#page-3-0)[C](#page-3-0)[o](#page-1-0)[mp](#page-2-0)[ut](#page-3-0)[at](#page-0-0)[io](#page-1-0)[n](#page-2-0) [1](#page-3-0)[9.](#page-0-0)[1](#page-1-0) [\(](#page-2-0)[20](#page-3-0)[15](#page-0-0)); 299 Discover the world at Leiden University **3** / 9 $\overline{3}$ / 9 $\overline{$

Information Content

Computation

- \blacktriangleright Sample $\mathcal{O}(m)$ points and connect them randomly through random walks
- \triangleright Compute in the random walk $\Delta C_i = \frac{C(\vec{\theta}_{i+1}) - C(\vec{\theta}_{i})}{\left\|\vec{\theta}_{i+1} - \vec{\theta}_{i}\right\|}.$ II
- \triangleright Discretize the walk to a sequence $\phi(\epsilon) = \begin{cases} \text{sgn}(\Delta C_i) & \text{if } |\Delta C_i| > \epsilon \\ 0 & \text{if } |\Delta C_i| > \epsilon \end{cases}$ \odot if $|ΔC_i| ≤ ε$
- \blacktriangleright Compute the IC as

$$
H(\epsilon) = \sum_{a \neq b} -p_{ab} \log_6 (p_{ab}),
$$

for $ab=\{-,\odot,+\}^2$, with p_{ab} the extimated probability of the sequence (*ab*) in $\phi(\epsilon)$

Interpretation

- \blacktriangleright Value of IC
	- \blacktriangleright Large IC means high variability in the landscape
	- \blacktriangleright Low IC means no change
	- \blacktriangleright IC gives insights in the probability of change
- \blacktriangleright Value of ϵ
	- If ϵ is large, the landscape is flat (to this scale)
	- If ϵ is smal, variability is enforced
	- \blacktriangleright ϵ provides insights in the value at which the landscape is variable
- \triangleright Combining the values of IC and ϵ we can estimate the gradient norm, in average in all directions

(ロ) (個) (目) (目) (目) 目 のQ(0)

Theoretical Results

Gradient norms are related to ϵ

$$
\text{Prob}\left(\mathbb{E}_{\vec{\theta}}\left(\nabla C(\vec{\theta}) \cdot \vec{\delta}\right) \leq \epsilon\right) = \Phi_G\left(\frac{\epsilon \sqrt{m}}{\|\nabla C\|}\right),\tag{1}
$$

for Φ_G the CDF of a normal distribution, and

$$
\|\nabla C\|^2 = \mathbb{E}\left(\left\|\nabla C(\vec{\theta})\right\|^2\right)
$$

Maximal IC

Let $\epsilon_M = \mathrm{argmax}_{\epsilon}(H(\epsilon))$, then

$$
\|\nabla C\| \in \Omega\left(\epsilon_{\mathcal{M}}\sqrt{m}\right) \tag{2}
$$

Sensitive IC Let $\epsilon_S = \min\{\epsilon > 0 | H(\epsilon) \leq \eta\}$, then

$$
\|\nabla C\| \le \frac{\epsilon_{\rm S}\sqrt{m}}{\Phi_G^{-1}\left(1 - 3\eta/2\right)}.\tag{3}
$$

メロメメ 倒 メメ きょくきょう

Numerical experiments

- \blacktriangleright Experiments in known problems for barren plateaus^a (up to shot noise).
- \triangleright Same circuit, different (global / local) observables show different regimes
- \triangleright We match the theoretical results, while numerical scaling factors are also available

^aM. Cerezo et al. Nature Communications 12.1 (Mar. 2021),

Numerical experiments

- \blacktriangleright Experiments in known problems for barren plateaus.
- \triangleright Same circuit, different (global / local) observables show different regimes
- \blacktriangleright We match the theoretical results, while numerical scaling factors are also available

∍

Conclusions

- \triangleright We propose a data-driven method to study variational quantum algorithms
- \triangleright Data-driven methods have a broader range of applicability than analytical methods
- \triangleright We connect information content to the average norm of the gradient with analytical bounds
- \triangleright We can characterize barren plateaus easily with remarkable accuracy
- \triangleright Scaling prefactors are accessible for the first time
- ▶ Hopes for VQAs
	- \blacktriangleright Learn landscapes before optimization
	- \blacktriangleright Use suitable optimizers
	- \blacktriangleright Estimate resources for successful optimization

The end

Thank you for your attention

Analyzing variational quantum landscapes with information content

Adrián Pérez-Salinas In collaboration with X. Bonet-Monroig, H. Wang

QTML 2023 November 24th 2023

Instituut-Lorentz

Universiteit eiden The Netherlands

イロメ イ部メ イ君メ イ君メ

Adrián Pérez-Salinas, Hao Wang, and Xavier Bonet-Monroig. (2023). arXiv: [2303.16893 \[quant-ph\]](https://arxiv.org/abs/2303.16893)

 \langle a Q a')