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What is the key to scaling neural networks
in practice?
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Parameterized quantum models

Parameterized operations acting on an initial state, measure some Hermitian observable

F(6) = (¥(0)|0](9))

e (Quantum simulation
- Simulate the dynamics of some target system
- Approximate ground state energy/learn ground states (VQE)

- Chemistry and material science



Parameterized quantum models

Parameterized operations acting on an initial state, measure some Hermitian observable

F(6) = (¥(0)|0](9))

e (Quantum optimization
- Approximate solutions to large combinatorial problems (QAOA)

- Logistics and finance



Parameterized quantum models

Parameterized operations acting on an initial state, measure some Hermitian observable

F(6) = (¥(0)|0](9))

e Quantum machine learning
- Output label or loss function

- More expressive /interesting?
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Parameterized quantum models

Parameterized operations acting on an initial state, measure some Hermitian observable

F(6) = (¥(0)|0](9))

optimization

e In short, people care about these models
e Need to be able to optimize them

e Gradient-based methods



Gradient-based optimization
in machine learning



Backpropagation

e Recipe to compute gradients of a function
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e The first computationally efficient method to update

parameters of a neural network

v

v



Backpropagation

e Recipe to compute gradients of a function

e The first computationally efficient method to update

parameters of a neural network

F(0,z) =o0(0m(c(Op—1..-01(x))))

e As a neural network function is being computed,
intermediate information is cleverly stored and reused

for gradient computation

e Not just “the chain rule”

v

v
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Griewank, A., & Walther, A. (2008). Fvaluating derivatives: principles and techniques of algorithmic differentiation. Society for industrial and
applied mathematics.
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Backpropagation scaling

Given a parameterized function, F(), # ¢ RM

Let F'(0) be an estimate of the gradient vector, to within constant € in the infinity norm

TIME(F'(0)) < ¢; TIME(F())

MEMORY (F’(6)) < ¢; MEMORY (F(6))

For neural networks, c1, co € [2, 5]

Griewank, A., & Walther, A. (2008). Fvaluating derivatives: principles and techniques of algorithmic differentiation. Society for industrial and
applied mathematics.



“(Quantum backpropagation” scaling

Given a parameterized function, F(), # ¢ RM

Let F'(0) be an estimate of the gradient vector, to within constant € in the infinity norm

TIME(F'(0)) < ¢; TIME(F())

MEMORY (F’(6)) < ¢; MEMORY (F(6))

For quantum models?



“(Quantum backpropagation” scaling

Given a parameterized function, F(), # ¢ RM

Let F'(0) be an estimate of the gradient vector, to within constant € in the infinity norm

TIME(F'(0)) < ¢; TIME(F())

MEMORY (F’(6)) < ¢; MEMORY (F(6))

For quantum models? €1,C2 = polylog(M)



“(Quantum backpropagation” scaling

Given a parameterized function, F(), # ¢ RM

Let F'(0) be an estimate of the gradient vector, to within constant € in the infinity norm

TIME(F'(0)) < ¢; TIME(F())

MEMORY (F’(6)) < ¢; MEMORY (F(6))

For quantum models? €1,C2 = polylog(M)

All quantum gradient methods in literature do not achieve this
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The nuance of quantum gradients
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Let our observable of interest be Z, then:
F(8) = (0] X Ze= 19X |0)
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The nuance of quantum gradients

[¥(6)) = e**¥ |0) 10— Rx(0)
Vo [(8)) = (=iX)e™ % |0)

Let our observable of interest be Z, then:
F(8) = (0] X Ze= 19X |0)

VoF(0) = (0] X Z(—iX)e % |0) + (0] (1X)e??X Ze= 10X |0)

Vo—oF(0) = 2 Im((0| ZX |0)
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The nuance of quantum gradients

[9(0)) = e=*2% e 1Y |0)

Let our observable of interest be Z, then:

0)—

Ry (61)

Rx (62)

Vo, F(0) = 2 Re((0] et01Y ei02X Zo=i02X(_jy)e=101Y |())

Vo, F(0) = 2 Re((0] 1Y 02X 7 (i X )e~ 02X e=101Y |())




The nuance of quantum gradients

[1(0)) = e~ X 7T 0) 0)— Ry (61) — Rx (62)

e

Let our observable of interest be Z, then:

Setting (91, 92 =0

Vo, F(0) = 2 Re((0] e?01Y ei02X Zo=102X(_jy)e=101Y |0)) =2 Im)

Vo, F(0) =2 Re((0] e?1Y 192X 7 (i X )e 02X e=11Y |0)) = 2 Im)

(01 Y |0)

(01 2X[0)
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The nuance of quantum gradients
[¥(0)) = e7 "2 X e |0) 0)— Ry (61) HRx (02) | /AN

Let our observable of interest be Z, then:

Setting (91, 92 =0

Vo, F(0) = 2 Re({0] 1Y 02X Ze=i02X (i)=Y 0y) = 2 TImf (0] ZY |0)

Vo, F(0) =2 Re((0] 1Y 92X 7 (i X)e 02X =Y |0)) = 2 Im|(0| ZX |0)

Estimating M gradient components of a model with M parameters,
corresponds to estimating M expected values

10
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Cost model

Fach parameterized operation and its inverse = unit cost

U(0) =152, Us(0))

[4(6)) = U(6)[0) ~ M

F(9) = (o|u®ou®) o) ~ M/e

[F'(0)]o, =2 Re[(0|U(6)1005,U () 0)] ~ M/e?

—~ M2/62

for a single component!

for full gradient

TIME(F'(6)) = M?
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Cost model

Fach parameterized operation and its inverse = unit cost

U(6) =I5, U; (6))

[¥(8)) = U(9)]0) ~ M

F(0) = (ou@®)'ou®)lo) ~ M/e

[F(0)]g, = 2 Re[(0|U(0)T00,,U(0)0)] ~ M/e for a single component!

~ M?/é? for full gradient
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Cost model

Fach parameterized operation and its inverse = unit cost

U(6) =I5, U; (6))

[¥(8)) = U(9)]0) ~ M

F(0) = (ou@®)'ou®)lo) ~ M/e

[F(0)]g, = 2 Re[(0|U(0)T00,,U(0)0)] ~ M/e for a single component!

~ M?/é? for full gradient

TIME(F'(6)) ~ TIME(F(6))

Classical

12



It 75 a big deal

Quantum backpropagation 25 000 000
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Babbush, Ryan, Jarrod R. McClean, Michael Newman, Craig Gidney, Sergio Boixo, and Hartmut Neven. "Focus beyond quadratic speedups for error-corrected quantum

advantage." PRX Quantum 2, no. 1 (2021): 010103.
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Quantum model settings

1

. Input state is known

[¥(8)) = U(9)]0)

2. Input state is unknown

a) Single copy access

[9(0)) = U©O)[¥)

[ )

|¢>] |¢>] |y

b) Multi-copy access

()oY [4p) -+ |h)

14



Quantum model settings

2. Input state is unknown

a) Single copy access

[ )

| [ |

[9(0)) = U©O)[¥)
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Backpropagation scaling is not possible

2. Input state is unknown

[9(0)) = U©O)[¥)

a) Single copy access U() = H;‘i 0P

and then set 8 =0

L] (] [ [

S. Chen, J. Cotler, H. -Y. Huang and J. Li, "Exponential Separations Between Learning With and Without Quantum Memory," 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 2022, pp. 574-585, doi: 10.1109/FOCS52979.2021.00063.



Backpropagation scaling is not possible

2. Input state is unknown

[9(0)) = U©O)[¥)

a) Single copy access

Corollary 5.9 (Shadow tomography lower bound for Pauli observables). Any learning algorithm
without quantum memory requires

T >Q(2"/e?) (117)

copies of p to predict expectation values of tr(P;p) to at most e-error for all i = 1,...,2(4" — 1)
with at least a probability of 2/3.

L] (] [ [

S. Chen, J. Cotler, H. -Y. Huang and J. Li, "Exponential Separations Between Learning With and Without Quantum Memory," 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 2022, pp. 574-585, doi: 10.1109/FOCS52979.2021.00063.

15



Backpropagation scaling is not possible

2. Input state is unknown

[9(0)) = U©O)[¥)

a) Single copy access TIME(F'(0)) = M? = M TIME(F(0))

L] (] [ [

S. Chen, J. Cotler, H. -Y. Huang and J. Li, "Exponential Separations Between Learning With and Without Quantum Memory," 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 2022, pp. 574-585, doi: 10.1109/FOCS52979.2021.00063.



Backpropagation scaling is not possible

/

/

2. Input state is %Wn

a) Single copy aCcess

2y /-iz >i [OAREN

[9(0)) FU©0)[¥)
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1. Input state is known

[¥(8)) = U(9)]0)

a) Single copy access

L] (] [ [

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Ji, Zhengfeng, Yi-Kai Liu, and Fang Song. "Pseudorandom quantum states." Advances in Cryptology-CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III 38. Springer International Publishing, 2018. 16
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Single copies, pure state of poly complexity

Let p = |[¢)1)|, where |¢) is a state generated from a polynomial complexity circuit

1. Can learn the circuit efficiently info-theoretically (using classical shadows)

2. Cannot determine said state efficiently, computationally (in general)
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Single copies, pure state of poly complexity

Let p = |[¢)1)|, where |¢) is a state generated from a polynomial complexity circuit
K ~nP™ possible circuits. Denote the states by |¢1), [¢2) ..., |Px)

Classical shadows method to estimate the fidelity w.r.t. all K states using a “shadow” of p

[ {¢1]e) |2
[ (¢2l) 2

(oxcl)

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature
Physics 16.10 (2020): 1050-1057.
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Let p = |[¢)1)|, where |¢) is a state generated from a polynomial complexity circuit
K ~nP™ possible circuits. Denote the states by |¢1), [¢2) ..., |Px)

Classical shadows method to estimate the fidelity w.r.t. all K states using a “shadow” of p

| (p1]) |2
| <¢2.W> 2 Q(log(K)/€?) measurements

(oxcl)

Will find fidelity = 1, w.h.p.

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature
Physics 16.10 (2020): 1050-1057.
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Single copies, pure state of poly complexity

Let p = |[¢)1)|, where |¢) is a state generated from a polynomial complexity circuit
K ~nP™ possible circuits. Denote the states by |¢1), [¢2) ..., |Px)

Classical shadows method to estimate the fidelity w.r.t. all K states using a “shadow” of p

| (p1]) |2
| <¢2.W> 2 Q(log(K)/€?) measurements

(oxcl)

Obtaining the maximum fidelity involves storing K values and searching over them

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature
Physics 16.10 (2020): 1050-1057.
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Single copies, pure state of poly complexity

Let p = |[¢)1)|, where |¢) is a state generated from a polynomial complexity circuit

Proposition: Under standard cryptographic assumptions, no efficient computational procedure
exists to identify a pure state of polynomial complexity to trace distance €

Proof:
1. A pseudo-random quantum state is defined to be a pure state of polynomial complexity

2. No efficient computational algorithm given a polynomial number of copies of the state can
distinguish from the Haar random state

3. Classical shadows + classical search procedure recreates the state to trace distance € using a
polynomial number copies of the state

4. If this is computationally efficient, then the state can be cloned efficiently, violating the no-cloning
theorem for pseudo-random states which rests upon standard cryptographic assumptions

Ji, Zhengfeng, Yi-Kai Liu, and Fang Song. "Pseudorandom quantum states." Advances in Cryptology-CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III 38. Springer International Publishing, 2018.

18



Quantum model settings

/

1. Input state j& known

[vi#)) = U(0)0)
/

a) Single copy #Ccess

o) A 1) | 1)
/

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Ji, Zhengfeng, Yi-Kai Liu, and Fang Song. "Pseudorandom quantum states." Advances in Cryptology-CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III 38. Springer International Publishing, 2018. 19



Achieving backprop scaling seems unlikely with single copies

1. Input state is known

[¥(8)) = U(9)]0)
/

2. Input state is unknown

a) Single copy #Ccess

2y /_% >i ) |- | 1)

[9(0)) = U©O)[¥)

20
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[F'(0)]6, =2 Re[{0] U(0)T00,U(9) 0)]
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Allowing multi-copy access
(Intuition)



Multi-copy measurements

n qubits

n qubits

1 ! N
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k,t
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—
Q
~

(b) 1D dynamics

(c) 2D dynamics
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Huang, H.Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., Neven, H., Babbush, R., Kueng, R., Preskill, J. and McClean, J.R., 2022.
Quantum advantage in learning from experiments. Science, 376(6598), pp.1182-1186.
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Multi-copy measurements (restricted setting)

M _ip.P;
U(o) = Hj:l e % and then set parameters to zero

All M gradient components can be estimated to within a fixed precision € using O(log(M)/€*) function calls

-------------------------------

-------------------------------

which is in line with our definition of backpropagation scaling! :)

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Information-theoretic bounds on quantum advantage in machine learning." Physical Review
Letters 126.19 (2021): 190505.
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Move away from restricted setting?



Multiple copies (general setting)
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Shadow tomography:

Aaronson, Scott. "Shadow tomography of quantum states." Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. 2018.
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Multiple copies (general setting)

Shadow tomography:

Let € be a class of two-outcome measurements with outcomes in {41}
Given m copies of an unknown n-qubit quantum state [¢)),

and known measurements Fq,..., Ey € £

Task:

Aaronson, Scott. "Shadow tomography of quantum states." Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. 2018.
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Shadow tomography:

Let € be a class of two-outcome measurements with outcomes in {41}
Given m copies of an unknown n-qubit quantum state [¢)),

and known measurements Fq,..., Ey € £

Task:
Output estimates by, ...,by € [—1,1] such that |by — (V| E|)| < e VE

Aaronson, Scott. "Shadow tomography of quantum states." Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. 2018.
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Multiple copies (general setting)

Shadow tomography:

Let € be a class of two-outcome measurements with outcomes in {41}
Given m copies of an unknown n-qubit quantum state [¢)),

and known measurements Fq,..., Ey € £

Task:
Output estimates by, ...,by € [—1,1] such that |by — (V| E|)| < e VE

In particular, do this via a measurement of [¢))®™ where m is as small as possible

Aaronson, Scott. "Shadow tomography of quantum states." Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. 2018.
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Multiple copies (general setting)

Shadow tomography reduction:

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

Shadow tomography reduction:
Suppose there is an algorithm which can estimate all gradient components to precision e, with m copies

and with runtime T'.

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

Shadow tomography reduction:

Suppose there is an algorithm which can estimate all gradient components to precision e, with m copies
and with runtime 7'.

Then, this gives an algorithm for shadow tomography of poly-time observables, to precision %,
with m copies of |¢) and runtime T

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).

25



Multiple copies (general setting)

Quantum neural network:

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

Quantum neural network:

QNN ([9) = (0| (|d" (6) ZoU(8)[0) )

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

There exists an explicit algorithm which produces estimates by for all £k = 1,..., M such that

|br. — 509, QNN (|¥))| < e Vk

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

There exists an explicit algorithm which produces estimates by for all £k = 1,..., M such that

|br. — 509, QNN (|¥))| < e Vk

Using only

copies of [1)). Moreover, the required number of quantum operations for the proposed algorithm is O(mM )

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

There exists an explicit algorithm which produces estimates by for all £k = 1,..., M such that

|br. — 509, QNN (|¥))| < e Vk

Using only

copies of [1)). Moreover, the required number of quantum operations for the proposed algorithm is O(mM )

TIME(F'(0)) . polylog(M) TIME(F(6))

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

There exists an explicit algorithm which produces estimates by for all £k = 1,..., M such that

|br. — 509, QNN (|¥))| < e Vk

Using only

copies of [1)). Moreover, the required number of quantum operations for the proposed algorithm is O(mM )

Classical resources: M - 20(”)

Abbas, Amira, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. "On quantum
backpropagation, information reuse, and cheating measurement collapse." arXiv preprint arXiv:2505.13362 (2023).
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Multiple copies (general setting)

“Quantum-efficient” backpropagation:

Imt;:::;r?n_lme o ! » | Update Rotat Update Rotat Update :
& ! if needed otate if needed otae "7 if needed :
|
_______ e —— :
! I
. L L
P Apply all I !
Input states: . =  operations || Threshold - Rotate | | Threshold | Rotate _ | Threshold :
OfpolylogM)) |~ | o(Mpolylog(M)) | X |, 1]0(polylog(a)) | K | |O(polylog(dr)) | K|
p i —H i i . [
! I
U v !
Forward: F(0) 1 Backward: [F'(0)]e, [F'(0)]e,, :

1Aau"onson, Scott, Xinyi Chen, Elad Hazan, Satyen Kale, and Ashwin Nayak. "Online learning of quantum states." Advances in neural information
processing systems 31 (2018).

ZBédescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing (2021).



Takeaways

1

. Input state is known

[¥(8)) = U(9)]0)

2. Input state is unknown

a) Single copy access

[9(0)) = U©O)[¥)

[ )

|¢>] |¢>] |y

b) Multi-copy access

()oY [4p) -+ |h)
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Takeaways

1. Input state is known

Computational arguments

2. Input state is unknown

a) Single copy access

[ )

|

) |-

Info-theoretic lower bounds

29



Takeaways

1. Input state is known

2. Input state is unknown

b) Multi-copy access

()oY [4p) -+ |h)

Time efficient in quantum resources
Memory fails
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Open questions

@ Is there an efficient C?Tﬁlonal scheme for quantur gradients?

you!

@ Special cases of parameterized modelsthat scale and train well?
® Other models types?

® Different methods for optimization?



Geoff Hinton after writing the
paper on backprop i 1986

L
=
K

but'your kidsiare gonna love it.
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