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Two different flavours of quantum kernels

On NISQ devices
Search for useful applications
(e.g. Belis’ talk 15:30 today)

On fault-tolerant devices
Search for a provable speedup on
artificial tasks (e.g. Liu et al 2021)
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Motivation

Can we kernelize any quantum algorithm
that has both theoretical guarantees

and practical applications in data analysis?

Yes! One choice is topological data analysis.
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Motivation

(1) Liao et al.
Genome Biol
2019.
(2) Giusti et al.
PNAS 2015.
(3) Rabadán et
al. Nat Comm
2020.
(4) Qiu et al.
Nat Comput
Sci 2023.
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Topological data analysis
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Algebraic topology

Abstract simplicial complex
= collection of subsets of S

closed under ⇢

A

B

C

⌃ ={{A}, {B}, {C},
{A,B}, {A,C}, {B,C},
{A,B,C}}

⌃ =⌃0 [ ⌃1 [ ⌃2 [ . . .

k -th chain group
Ck = span{⌃k}

boundary map @k : Ck ! Ck�1,
@k� =

P
k

j=0(�1)j(� \ {�j})
Note that @k@k+1 = 0

k -th cycle group
Zk = span{� 2 ⌃k | @� = 0} ⇢ Ck

k -th boundary group
Bk = span{� 2 ⌃k | @⌧ = �, ⌧ 2

Ck+1} ⇢ Zk

k -th Betti numbers �k = dim ker(Zk )� dim ker(Bk )
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Algorithms to estimate the Betti numbers

We can study the topological properties of ⌃ via the
Combinatorial Laplacian operator, �k ,

�k = @†
k
@k + @k+1@

†
k+1

for which
dim ker�k = �k .
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Algorithms to estimate the Betti numbers

Hard to have the explicit representation of �k on a classical
computer, but easy on a quantum one (supposing efficient
sampling of k -cliques).

We can estimate an ✏-additive approximation for the normalized
Betti number, �k/|⌃k |,

Randomly sampled
eigenvector �k

Randomly sampled
eigenvalue

and estimate the % of zero eigenvalues.
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Algorithms to estimate the Betti numbers (more)
1. Encoding

I � 2 ⌃ over n vertices
I |�i = |b1 . . . bni
I bj = 1 () vj 2 �

2. Uniform distribution of
eigenvectors
I ⇢ =

P
�2⌃k

|�ih�|
I you are able to sample

k -cliques efficiently
3. Efficient construction of �k

I � =
P

j
Z⌦(j�1)⌦X ⌦ I(n�j)

for complete abs
I Project onto the subspace

of ⌃’s simplices
4. Eigenvalues estimation

I no lower bound on the
spectral gap

I Lloyd et al.
Nat. Comm. 7(1), 2016.

I Ubaru et al.
arXiv:2108.02811, 2021.

I Gyurik et al.
Quantum 6, 2022.

I Hayakawa.
Quantum 6, 2022.

I McArdle et al.
arXiv:2209.12887, 2022.

I Apers et al.
arXiv:2211.09618, 2023.

I Berry et al.
arXiv:2209.13581, 2023.

I ...
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Kernelize BNE
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Intuition
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Multidimensional Betti curves

Let F = (⌃1, . . . ,⌃q),⌃i ⇢ ⌃j for i < j be a filtration.

The Betti curve b 2 Rq is defined by

[b]j = �1(⌃j).

Classically, only low-degree topological features are estimated
due to the computational cost.

Does not use persistent features
(e.g. holes surviving from one abs to another of the filtration)

This approach is still relevant in the literature, even for
non-machine learning tasks (e.g. Giusti el al. PNAS 2015).
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Multidimensional Betti curves

We can extend the concept of the Betti curve, and adapt to the
normalized value we can efficiently retrieve, on many orders of
Betti numbers. This leads to B 2 Rq⇥m,

[B]j,k =
�k (⌃j)

|⌃j |
.

The mapping � : Filtration ! Rq⇥m is a feature map.
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Multidimensional Betti curves

(F1,F2) = h�(F1),�(F2)iF = Tr[�(F1)
†�(F2)] (1)

(F1,F2) = exp
⇣
� � · k�(F1)� �(F2)kF

⌘
(2)

Note that:
I Gaussian smoothing (eq. 2) leads to smoother prediction

functions;
I Johnson and Jung (2021) derived single-dimensional Betti

curves from persistent diagrams and showed that the
formulation is stable with respect to the 1-Wasserstein
metric on persistent diagrams (robust to small perturbation
of the persistent diagrams).
We are not arguing about stability in our approach.
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Multidimensional Betti curves

Difference with classical approaches:
I Classical approaches are usually based on persistent

features
I Non-persistent features are still relevant
I Can immediately exploit the majority of BNE quantum

algorithms
I Quantum algorithms for persistent BN but require even

more resources
I We are not necessarily estimating Betti numbers (zero

eigenvalues) but the low-lying portion of the spectrum of
�k (zero or close to zero)
I Do we know the spectral gap?
I Are we okay with estimating the low-lying portion of the

spectrum?
I We are using normalized Betti numbers

I �k/|⌃k | = �0
k
/|⌃0

k
| 6) �k = �0

k
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Open points

I Straightforward extension of quantum algorithms for Betti
number estimation
I can we have a more general approach?

I Can we characterize the expressibility of the multidimensional
normalized Betti curve kernel?
I Exponential concentration of kernel values? (Thanasilp et al)

I Which are the “nearest” term applications?

(Appendices, or catch up later!)
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Take-away messages
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Take-away messages

1. The kernelization of quantum TDA algorithms can lead to
both theoretical guarantees and practical applications.

2. Such kernels can differ from topological kernels in the
classical domain in many aspects

3. They require fault-tolerant quantum hardware and many
resources, few simple use cases might come sooner than
the most general and interesting data analysis use case.
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Thank you!

Higher-order topological kernels via quantum computation.

M. Incudini, F. Martini and A. Di Pierro.

To appear at the Proceeding of the 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE).

Appendices !
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Appendix 1:
open points
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Spectral similarity
Let n be the vertices in the abs, and m be the precision of QPE.
After QPE we end up with the state:

| i =
X

j

↵j

���j

↵
m

��vj

↵
n

For BNE we estimate ↵0 (corr. �0 = 0) and we embed this
piece information of information into a kernel function.
We can generalize the approach to compare portions of the
spectrum of two operators:

����0j
E
= (I ⌦ h0|)

���j

↵

���⌫ 0j
E
= (I ⌦ h0|)

��⌫j

↵

 =
D
⌫ 0

j

����0j
E
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Appendix 2:
nearest-term toy tasks
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Toy problem

Original data Point cloud Filtration Betti curve Topological kernel ML model

k = 1, 2, 3, ...

1. Distinguish triangles from squares cut in half
(different topological features);

2. Create deformed figures, samples points on the border,
construct a Vietoris-Rips filtration;

3. Estimate the multidimensional Betti curves for the
filtrations;

4. Calculate the kernel matrix and fed it to the kernel
machine.
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Toy problem

Important points:
I �k has been described as the sum of Pauli strings, which

has polynomially many terms only for certain classes of
ABS

I Allows to use Trotter or qDrift for Hamiltonian Simulation,
minimizing the number of qubits required.
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Some preliminary results

Topological

RBF γ=1e-4 RBF γ=1e-3 RBF γ=1e-2 RBF γ=1e-1 RBF γ=1
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Laplacian γ=1e-4 Laplacian γ=1e-3 Laplacian γ=1e-2 Laplacian γ=1e-1 Laplacian γ=1
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Some preliminary results
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