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Quantum Supervised Learning
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{(x1, y1), (x2, y2), …, (xN, yN)} iid∼ D
Given N labelled sample classical data, Find prediction function , f(x)

min 𝔼X,Y∼D | f(X) − Y |



Quantum Supervised Learning

1. Quantum Neural Networks
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{(x1, y1), (x2, y2), …, (xN, yN)} iid∼ D
Given N labelled sample classical data, Find prediction function , f(x)

min 𝔼X,Y∼D | f(X) − Y |

2. Quantum Kernel Methods
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arg minθ L(θ)

V(x)

Data Embedding Variational Circuit

U(θ)
|0⟩
|0⟩
|0⟩
|0⟩

V(x) V†(x′ )

k(x, x′ ) = |⟨x |x′ ⟩ |2f(x; θ) = ⟨x |U(θ)†OU(θ) |x⟩
Prediction function: Kernel function:

V(x) |0⟩⊗n = |x⟩*Note Quantum Embedding:



Lower bound of Empirical Risk (QNN)
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•    Given data , Quantum Embedding   
   determines the lower bound of Empirical Risk (Training error)     

{(x1, y1), (x2, y2), …, (xN, yN)} iid∼ D V( ⋅ )
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•    Given data , Quantum Embedding   
   determines the lower bound of Empirical Risk (Training error)     

{(x1, y1), (x2, y2), …, (xN, yN)} iid∼ D V( ⋅ )

Consider Binary Classification  & Linear Loss  ,yi ∈ {+1, − 1} l( f(x), y) =
1
2

|y − f(x) |

•    Training QNN = Quantum State Discrimination  

   with POVM , where   {E+(θ), E−(θ)} E±(θ) =
1
2

(I ± U†(θ)OU(θ))
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•    Training QNN = Quantum State Discrimination  

   with POVM , where   {E+(θ), E−(θ)} E±(θ) =
1
2

(I ± U†(θ)OU(θ))

Ls(θ) =
1
N [

N−

∑
i=1

P(E+(θ) |x−
i ) +

N+

∑
i=1

P(E−(θ) |x+
i )]

≥
1
2

− Dtr(p−ρ−, p+ρ+)

ρ± =
1

N± ∑ |x±
i ⟩⟨x±

i |

p± = N±/N
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By having Large Trace Distance, 

•     Smaller Lower Bound of Empirical Risk (Training Error) 
•     Classification task becomes robust against noise Dtr(Λ(ρ0), Λ(ρ1)) ≤ Dtr(ρ0, ρ1)
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V(g(xi, w))
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x

g(x, w)

V†(g(xj, w))

w′ = arg min
w ∑

ij
[|⟨xi(w) |xj(w)⟩ |2 − 1

2 (1 + yiyj)]
2

Update parameters: w ← w′ 

Post-process data
⋮ ⋮

Pr ( |0⟩⊗n)

|xi(w)⟩ = V(g(xi, w)) |0⟩⊗n

By having Large Trace Distance, 

•     Smaller Lower Bound of Empirical Risk (Training Error) 
•     Classification task becomes robust against noise 

Neural Quantum Embedding (NQE)
Dtr(Λ(ρ0), Λ(ρ1)) ≤ Dtr(ρ0, ρ1)

By Choosing  for NQE m > m′ 

g : ℝm → ℝm′ 



Experimental Results
Hamiltonian Encoding

• A popular example of the quantum feature map:
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𝒰(x) =

k(x, y) = |⟨0 |(𝒰†(y))d (𝒰(x))d |0⟩ |2

Havlíček et al. Nature 567, 209–212 (2019) 
Abbas et al. Nature Comp. Sci. 1, 403-409 (2021)

•  with some functions  (a.k.a  feature map) 

• Typical example: , 

UΦ( ⃗x) = exp i ∑
j

ϕ1(xj)Zj + ∑
j<k

ϕ2(xj, xk)ZjZk ϕ1 and ϕ2 ZZ

ϕ1(x) = x ϕ2(x, y) = (π − x)(π − y)

f(x, θ) = ⟨0 |(𝒰†(x))d V†(θ)OV(θ)(𝒰(x))d |0⟩

https://www.nature.com/


Experimental Results

V(g(xi, w⋆))
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arg minθ L(θ)

QCNN

(a) (b)

(c) (d)

( % )
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Training QCNN with and without NQE



Generalization Performance
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1. Quantum Neural Networks 2. Quantum Kernel Methods

•  Local Effective Dimension: 
 Complexity metric for Learning Model 
 (Abbas et al. arXiv:2112.04807) 

•  Positive Correlation with Generalization Error
W* =

N

∑
i=1

N

∑
j=1

yi(KQ + λI)−1
i,j |xj⟩⟨xj |

R(W) − RN(W) ≤ 𝒪 (
| |W | |F

N )
 where,



Expressibility & Trainability
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(a) (b)

  

(a) (b)

1. Expressibility 2. Variance of Kernel Elements
By Chebyshev’s Inequality,

Pr [ KQ
i,j − 𝔼 [KQ

i,j] ≥ δ] ≤
Var [KQ

i,j]
δ2

A = ∫Haar
( |ψ⟩⟨ψ | )⊗2dψ − ∫ℰ

( |ϕ⟩⟨ϕ | )⊗2dϕ

Deviation from Unitary 2-Design,



Summary
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• Emphasize the importance of data separability of quantum embedding 
 & introduce Neural Quantum Embedding 

• Employing NQE improves many QML metrics including, 
- lower training error 
- higher classification accuracy 
- robustness against noise 
- improved generalization 
- improved trainability



Thank You!
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