Tak Hur (w/ Israel F. de Araujo & Daniel K. Park) Yonsei University Department of Statistics and Data Science

Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning

Quantum Techniques in Machine Learning | November 23rd 2023

Quantum Supervised Learning

 $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}\stackrel{\text{iid}}{\sim}$ ∼ *D* Given N labelled sample classical data, Find prediction function $f(x)$,

$min E_{X,Y\sim D} |f(X) - Y|$

Quantum Supervised Learning

 $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}\stackrel{\text{iid}}{\sim}$ ∼ *D* Given N labelled sample classical data, Find prediction function $f(x)$,

1. Quantum Neural Networks

2. Quantum Kernel Methods

 $k(x, x') = |\langle x | x' \rangle|^2$

*Note Quantum Embedding: $V(x)|0\rangle^{\otimes n} = |x\rangle$

$\min \mathbb{E}_{X,Y\sim D} |f(X) - Y|$

Lower bound of Empirical Risk (QNN)

• Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\} \stackrel{\text{iid}}{\thicksim} D$, Quantum Embedding $V(\cdot)$ determines the lower bound of Empirical Risk (Training error)

Lower bound of Empirical Risk (QNN)

• Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\} \stackrel{\text{iid}}{\thicksim} D$, Quantum Embedding $V(\cdot)$ determines the lower bound of Empirical Risk (Training error)

Training QNN = Quantum State Discrin with POVM $\{E_+(\theta), E_-(\theta)\}$, where $E_+(\theta)$

Consider Binary Classification $y_i \in \{+1, -1\}$ & Linear Loss $l(f(x), y) = \frac{1}{2} |y - f(x)|$, 1 $\frac{1}{2} |y - f(x)|$

$$
\begin{aligned}\n\text{mination} \\
y &= \frac{1}{2}(I \pm U^{\dagger}(\theta)OU(\theta))\n\end{aligned}
$$

Lower bound of Empirical Risk (QNN)

• Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\} \stackrel{\text{iid}}{\thicksim} D$, Quantum Embedding $V(\cdot)$ determines the lower bound of Empirical Risk (Training error)

Training QNN = Quantum State Discrin with POVM ${E_+(\theta), E_-(\theta)}$, where $E_+(\theta)$

$$
\begin{aligned}\n\text{mination} \\
y &= \frac{1}{2}(I \pm U^{\dagger}(\theta)OU(\theta))\n\end{aligned}
$$

$$
L_{s}(\theta) = \frac{1}{N} \left[\sum_{i=1}^{N^{-}} P(E_{+}(\theta) | x_{i}^{-}) + \frac{1}{2} - D_{\text{tr}}(p^{-}\rho^{-}, p^{+}\rho^{+}) \right]
$$

Consider Binary Classification $y_i \in \{+1, -1\}$ & Linear Loss $l(f(x), y) = \frac{1}{2} |y - f(x)|$, 1 $\frac{1}{2} |y - f(x)|$

$$
\sum_{i=1}^{N^{+}} P(E_{-}(\theta) \mid x_{i}^{+})
$$

$$
\rho^{\pm} = \frac{1}{N^{\pm}} \sum |\mathbf{x}_i^{\pm}\rangle \langle \mathbf{x}_i^{\pm}|
$$

$$
p^{\pm} = N^{\pm}/N
$$

By having Large Trace Distance,

- Smaller Lower Bound of Empirical Risk (Training Error)
-

• Classification task becomes robust against noise $D_{\text{tr}}(\Lambda(\rho_0), \Lambda(\rho_1)) \leq D_{\text{tr}}(\rho_0, \rho_1)$

$D_{\text{tr}}(\Lambda(\rho_0), \Lambda(\rho_1)) \leq D_{\text{tr}}(\rho_0, \rho_1)$

By having Large Trace Distance,

$$
\sum_{ij} \left[\left| \langle x_i(w) | x_j(w) \rangle \right|^2 - \frac{1}{2} (1 + y_i y_j) \right]^2
$$

By Choosing $m > m'$ for NQE
cess data
 $g : \mathbb{R}^m \to \mathbb{R}^{m'}$

- Smaller Lower Bound of Empirical Risk (Training Error)
- Classification task becomes robust against noise

Neural Quantum Embedding (NQE)

Experimental Results Hamiltonian Encoding

• A popular example of the quantum feature map:

Havlíček et al. [Nature](https://www.nature.com/) 567, 209–212 (2019) Abbas et al. Nature Comp. Sci. 1, 403-409 (2021)

 $|0\rangle$

• Typical example: $\phi_1(x) = x$, $\phi_2(x, y) = (\pi - x)(\pi - y)$

$$
f(x, \theta) = \langle 0 | (\mathcal{U}^{\dagger}(x))^d V^{\dagger}(\theta) O V(\theta) (\mathcal{U}(x))^d |
$$

$$
k(x, y) = | \langle 0 | (\mathcal{U}^{\dagger}(y))^d (\mathcal{U}(x))^d | 0 \rangle |^2
$$

 $\phi_2(x_j, x_k) \text{Z}_j \text{Z}_k$ \bigcap with some functions ϕ_1 and ϕ_2 (a.k.a ZZ

Experimental Results

Training QCNN with and without NQE

Generalization Performance

- Local Effective Dimension: Complexity metric for Learning Model (Abbas et al. arXiv:2112.04807)
- Positive Correlation with Generalization Error

1. Quantum Neural Networks 2. Quantum Kernel Methods

||*W*|| F $R(W) - R_N(W) \leq \mathcal{O}$ *N*) *N N* $\sum y_i (K^Q + \lambda I)^{-1}_{i,j} |x_j\rangle \langle x_j|$ where, $W^* =$ ∑ *i*=1 *j*=1 0.35 **PCA-NQE NQE** eneralization Error Bound (G)
0.30
0.15
0.10 **Without NQE** \blacktriangle \blacktriangle \cup 0.05 0.3 0.7 0.8 0.1 0.2 0.4 0.5 0.6 Regularization Weight (λ)

 \blacktriangle 0.9

Expressibility & Trainability

1. Expressibility 2. Variance of Kernel Elements

$$
A = \int_{\text{Haar}} (|\psi\rangle\langle\psi|)^{\otimes 2} d\psi - \int_{\mathcal{E}} (|\phi\rangle\langle\phi|)^{\otimes 2} d\phi
$$

Deviation from Unitary 2-Design,

- Emphasize the importance of data separability of quantum embedding & introduce Neural Quantum Embedding
- •Employing NQE improves many QML metrics including,
	- lower training error
	- higher classification accuracy
	- robustness against noise
	- improved generalization
	- improved trainability

Thank You!

14

arXiv:2311.11412

