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An -class classification problem can be defined as follows: 
given a dataset  





consisting of pairs  that contain the data  and 
their respective labels , determine the label 

 corresponding to some new, unseen 
datum .

L

D = {(x1, y1), . . . , (xm, ym)}

(xi, yi) xi ∈ ℝN

yi ∈ {1,...L − 1}
yi ∈ {1,...L − 1}

x̃

Multi-class classification

Figure 1-11: One of the approaches proposed by Pérez-Salinas et al. for

multi-class classification with quantum circuits. (a) shows an illustrative 3-
class classification problem. (b) shows the proposed circuit for a single qubit. The
circuit can be divided into k layers where each layer L(i) applies a unitary opera-
tor encoding the classical data x and a unitary operator parameterised by ✓i. The
parameters [✓1, . . . , ✓k] are optimised to increase the similarity between the data and
the label state corresponding to its class in Hilbert space. (c) shows an illustrative
example of how the clusters could be placed around the label states { j}3j=1.

there are classes in the classification problem. This creates a dependence between the

encoding strategy and the number of classes.

For the classifier proposed by Nghiem et al., the clusters can be centred around

predefined label states or centres that move during the training procedure to be as

far apart as possible in Hilbert space. The predefined label states suggested are,

again, the computational basis states. As mentioned for the classifier proposed by

Pérez-Salinas et al., this creates a dependence between the encoding strategy and the

number of classes. An issue may also arise when training clusters to be maximally

separate. If many qubits are used for the embedding, then clusters need to be formed

in large Hilbert spaces. The similarities between training points in the same class

may be hard to find due to the vastness of the Hilbert space of many qubits. An

illustration of the approach that trains an encoding to produce maximally separate

clusters is shown in Figure 1-12.

These classifiers inspired the development of a multi-class quantum classifier that

makes use of label states to differentiate classes. The usefulness of a classifier that
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Problem Statement



Given two classical datapoints, a quantum kernel can be estimated as the squared 
state overlap between quantum states encoding these two datapoints.


If  defines some unitary operation that encodes the classical datum  into an      
-qubit quantum state as  then the kernel of two classical 

datapoints  and  is 


UΦ(x) x
n |Φ(x)⟩ = UΦ(x) |0⟩⊗n

x z

k(x, z) = |⟨Φ(z) |Φ(x)⟩ |2

Quantum Kernels
What is a quantum kernel?



Estimating quantum kernels
choice.

Figure 1-9: (a) Inversion Test and (b) SWAP-Test for evaluating quantum
kernels. These circuits can be used to evaluate the squared state overlap between
|�(x)i = U�(x) |0i⌦n and |�(z)i = U�(z) |0i⌦n.

Kernels, both classical and quantum, are closely connected to feature maps [21,33].

A classical kernel can be derived from the inner product of two data points that have

been transformed by some feature map. For quantum kernels, the process of encoding

the classical data into quantum states is interpreted as applying a feature map to those

states. The squared state overlap then reveals the similarity between the data in the

feature space just as the inner product reveals this similarity for classical kernels. The

quantum kernel that arises is dependent on the encoding. Interestingly, the standard

data encoding strategies used in quantum machine learning give rise to kernels that

resemble classical kernels [18, 33]. These are shown in Table 1.2. The kernel that

arises from amplitude encoding is the absolute square of the classical linear kernel

while the kernel that arises from rotation encoding is related to the classical cosine

kernel. The kernel that arises from coherent state encoding gives rise to a Gaussian

kernel [24].

Table 1.2: The feature maps and kernel that correspond to a few standard data
encoding strategies.

Data Encoding Strategy Feature Map Kernel
Amplitude Encoding x !

P2n

i=1 xi|ii k(x, z) = |hx|zi|2
Rotation Encoding x !

P1
q1,...,qn=0

Qn
k=1 cos(xk)qksin(xk)1�qk |q1, ..., qni k(x, z) =

Qn
k=1 |cos(xk � zk)|2

Coherent State Encoding x !
NN

i=1

�
e�

|xi|
2

2
P1

k=0
xk
ip
k!
|ki

�
k(x, z) = e�|x�z|2

The power of kernel methods is that the evaluation of the kernel allows for implicit
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choice.

Figure 1-9: (a) Inversion Test and (b) SWAP-Test for evaluating quantum
kernels. These circuits can be used to evaluate the squared state overlap between
|�(x)i = U�(x) |0i⌦n and |�(z)i = U�(z) |0i⌦n.

Kernels, both classical and quantum, are closely connected to feature maps [21,33].

A classical kernel can be derived from the inner product of two data points that have

been transformed by some feature map. For quantum kernels, the process of encoding

the classical data into quantum states is interpreted as applying a feature map to those

states. The squared state overlap then reveals the similarity between the data in the

feature space just as the inner product reveals this similarity for classical kernels. The

quantum kernel that arises is dependent on the encoding. Interestingly, the standard

data encoding strategies used in quantum machine learning give rise to kernels that

resemble classical kernels [18, 33]. These are shown in Table 1.2. The kernel that

arises from amplitude encoding is the absolute square of the classical linear kernel

while the kernel that arises from rotation encoding is related to the classical cosine

kernel. The kernel that arises from coherent state encoding gives rise to a Gaussian

kernel [24].
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The SWAP-Test The Inversion Test 

Routines for evaluating quantum kernels



The binary SWAP-Test classifier is a quantum kernel method that allows us to estimate a 
weighted power sum of kernel values between a test datum and all the training data

The binary swap-test classifier

Figure 1-10: The Binary SWAP-Test Classifier. The first register (an) stores the
ancilla. The second register is the index register (m), consisting of r qubits, which
links the training data in the training register (tr) to their respective label states
on the label qubit (l). The test data is stored in (te). Step A applies Us(D) which
prepares the test data, training data and training labels in a quantum state | ii, given
in equation (1.77). Step B applies the Hadamard gates and the controlled-SWAP gate
needed for the SWAP-Test. Step C converts what would be the measurement of a two
qubit observable into the measurement of a single qubit observable. Step D performs
a measurement of that observable h�(a)

z i.

separate registers using some data encoding strategy. The data encoding strategy will

specify a unitary operator U�(x) that encodes the classical data into n-qubit quantum

states as |xi = U�(x)|0i⌦n. The label qubit |ymi is used to store the labels of each

training point, with the ground state |0i representing class 0 and the excited state |1i

representing class 1. For binary classification, it is natural to use the computational

basis of a single qubit to store the class information.

Following the state preparation, a SWAP-Test is performed. Between two Hadamard

gates applied to the ancilla, a controlled-SWAP (C-SWAPd) swaps the test and train-

ing registers. This controlled-SWAP is conditioned on the ancilla. The result is

| fi = Ha.C-SWAPd.Ha| ii

=
MX

m=1

p
wm

2
(|0i | d+i+ |1i | d�i) |ymi |mi (1.78)

with | d±i = |x̃i⌦d |xmi⌦d ± |xmi⌦d |x̃i⌦d. Here, the subscript a denotes that the
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⟨σz⟩ =
M

∑
m=1

(−1)ym wm k(x̃, xm)d ỹ =
1
2 (1 − sgn⟨σz⟩)



The multi-class swap-test classifier

strate the robustness of the classifier to finite sampling and noise. Through variance analysis, we show that the num-
ber of label states that can be accurately distinguished on a single qubit grows linearly with the number of repetitions
of the required measurements. We also show that, under certain depolarising noise conditions, the classification
process remains unaffected. These theoretical results are demonstrated by numerical experiments that incorporate
depolarising noise and finite sampling.

The paper is organised as follows: Section 2 outlines the steps that constitute the proposed multi-class swap
test classifier, discusses its robustness to noise, and assesses the number of label states that can be stored with a
single qubit with this classifier. Section 3 presents the methodology and results of experiments conducted on various
datasets. Lastly, Section 4 draws concluding remarks, highlighting possible areas for future work.

2 Results

2.1 Classification with the Multi-Class SWAP-Test Classifier

Classification is a fundamental problem in machine learning. Given a dataset

D = {(xi, yi)}Mi=1 ⊂ RN × {yi}Li=1, (1)

consisting of training data {xi}Mi=1 and their respective labels {yi}Mi=1, the goal of supervised classification is to
develop a model for classifying unlabelled data. The algorithms for developing these models are called classifiers.
This section describes the steps that constitute the multi-class SWAP-Test classifier. These steps are also outlined
in Figure 1.

Figure 1: (a) The circuit required for the multi-class SWAP-Test classifier. The first register (an) stores the ancilla.
The second register is the index register (m), consisting of r qubits, which links the training data in the training register
(tr) to their respective label states on the label qubit (l). The test data is stored in (te). To perform a state tomography
of (l) at the end of the circuit, three circuits performing Steps A and B will be prepared. In each of these circuits,
Step A applies Us(D) which prepares the test data, training data and training labels in a quantum state |Ψi〉, given in
equation (2). Step B then swaps the registers containing the test and training data. In each circuit, Step C applies
one of the gate sequences in (b) to perform a change of basis to the X-basis, Y-basis or maintain the Z-basis. The
three circuits evaluate the predicted vector ypred which is then used in an assignment function to classify the test
data.

For some unlabelled test datum x̃, the multi-class SWAP-Test classifier requires the test datum, the training data
and their respective labels to be encoded in a quantum state as
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The Multi-Class SWAP-Test Classifier is inspired by the binary SWAP-Test classifier [1,2]. 

[1] Blank C, Park DK, Rhee JK, Petruccione F. Quantum classifier with tailored quantum kernel. npj Quantum Information. 2020 May 
15;6(1):41.

[2] Park DK, Blank C, Petruccione F. Robust quantum classifier with minimal overhead. In2021 International Joint Conference on Neural 
Networks (IJCNN) 2021 Jul 18 (pp. 1-7). IEEE.




The multi-class swap-test classifier

strate the robustness of the classifier to finite sampling and noise. Through variance analysis, we show that the num-
ber of label states that can be accurately distinguished on a single qubit grows linearly with the number of repetitions
of the required measurements. We also show that, under certain depolarising noise conditions, the classification
process remains unaffected. These theoretical results are demonstrated by numerical experiments that incorporate
depolarising noise and finite sampling.

The paper is organised as follows: Section 2 outlines the steps that constitute the proposed multi-class swap
test classifier, discusses its robustness to noise, and assesses the number of label states that can be stored with a
single qubit with this classifier. Section 3 presents the methodology and results of experiments conducted on various
datasets. Lastly, Section 4 draws concluding remarks, highlighting possible areas for future work.
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develop a model for classifying unlabelled data. The algorithms for developing these models are called classifiers.
This section describes the steps that constitute the multi-class SWAP-Test classifier. These steps are also outlined
in Figure 1.
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The second register is the index register (m), consisting of r qubits, which links the training data in the training register
(tr) to their respective label states on the label qubit (l). The test data is stored in (te). To perform a state tomography
of (l) at the end of the circuit, three circuits performing Steps A and B will be prepared. In each of these circuits,
Step A applies Us(D) which prepares the test data, training data and training labels in a quantum state |Ψi〉, given in
equation (2). Step B then swaps the registers containing the test and training data. In each circuit, Step C applies
one of the gate sequences in (b) to perform a change of basis to the X-basis, Y-basis or maintain the Z-basis. The
three circuits evaluate the predicted vector ypred which is then used in an assignment function to classify the test
data.

For some unlabelled test datum x̃, the multi-class SWAP-Test classifier requires the test datum, the training data
and their respective labels to be encoded in a quantum state as
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Given an -class classification problem, the classifier is realised by first preparing a quantum state 
encoding the test datum , the training data  and their respective labels  in the 
following format:


L
x̃ {xm}M

m=1 {ym}M
m=1

|Ψ⟩ =
M

∑
m=1

wm |0⟩ |m⟩ |xm⟩ | x̃⟩ |ym⟩



The multi-class swap-test classifier

Each label is mapped to a unique label state:


 

Each label state 





with  and  can be represented as a Bloch vector:





yi → |yi⟩

|yi⟩ = cos( θyi

2 ) |0⟩ + eiϕyi sin( θyi

2 ) |1⟩

0 ≤ θyi
≤ π 0 ≤ ϕyi

≤ 2π

yi =

cosϕyi
sinθyi

sinϕyi
sinθyi

cosθyi

Storing of labels

Figure 2: The optimal choice of label vectors for (a) 2 classes {y0 : [0, 0, 1], y1 : [0, 0,−1]}, (b) 3 classes {y0 :
[1, 0, 0], y1 : [−0.5, 0.866, 0], y2 : [−0.5,−0.866, 0]} and (c) 4 classes {y0 : [0, 0, 1], y1 : [−0.471, 0.861,−0.333], y2 :
[−0.471,−0.861,−0.333], y2 : [0.943, 0,−0.333]}. These vectors point to solutions of the Tammes problem: the problem
of placing L points on a unit sphere so that the two closest points are as far apart as possible [14]

Here, the subscript l denotes that the gates H and S† are applied to the label qubit.
Before we perform any measurement on the states, a C-NOT operation controlled on the ancilla and targeted on

the label qubit is applied to each state:

)))Ψ̃fx

*
= C-NOTa,l |Ψfx〉 ,

)))Ψ̃fy

*
= C-NOTa,l |Ψfy〉 , (7)

)))Ψ̃fz

*
= C-NOTa,l |Ψfz〉 .

This converts what would be a two qubit measurement to a single qubit measurement in each case [5]. Finally, the
measurement of a single qubit observable 〈σ(l)

z 〉, where the superscript l indicates that the operator acts only on the
label qubit, is performed on each state ρfs = |Ψ̃fs〉〈Ψ̃fs| for s ∈ {x, y, z}. The results of these measurements are
used to construct a vector which we refer to as the predicted vector ypred

ypred =

%

+&
Tr

,
σ
(l)
z ρfx

-

Tr
,
σ
(l)
z ρfy

-

Tr
,
σ
(l)
z ρfz

-

'

.( ,

(8)

=

%

&

"
m wm|〈x̃|xm〉|2cosφymsinθym"
m wm|〈x̃|xm〉|2sinφym

sinθym"
m wm|〈x̃|xm〉|2cosθym

'

( .
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A modified SWAP-Test, involving a state reconstruction of the qubit storing the label 
states, is then performed on the prepared state.

The multi-class swap-test classifier
Measurement

strate the robustness of the classifier to finite sampling and noise. Through variance analysis, we show that the num-
ber of label states that can be accurately distinguished on a single qubit grows linearly with the number of repetitions
of the required measurements. We also show that, under certain depolarising noise conditions, the classification
process remains unaffected. These theoretical results are demonstrated by numerical experiments that incorporate
depolarising noise and finite sampling.

The paper is organised as follows: Section 2 outlines the steps that constitute the proposed multi-class swap
test classifier, discusses its robustness to noise, and assesses the number of label states that can be stored with a
single qubit with this classifier. Section 3 presents the methodology and results of experiments conducted on various
datasets. Lastly, Section 4 draws concluding remarks, highlighting possible areas for future work.
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Figure 1: (a) The circuit required for the multi-class SWAP-Test classifier. The first register (an) stores the ancilla.
The second register is the index register (m), consisting of r qubits, which links the training data in the training register
(tr) to their respective label states on the label qubit (l). The test data is stored in (te). To perform a state tomography
of (l) at the end of the circuit, three circuits performing Steps A and B will be prepared. In each of these circuits,
Step A applies Us(D) which prepares the test data, training data and training labels in a quantum state |Ψi〉, given in
equation (2). Step B then swaps the registers containing the test and training data. In each circuit, Step C applies
one of the gate sequences in (b) to perform a change of basis to the X-basis, Y-basis or maintain the Z-basis. The
three circuits evaluate the predicted vector ypred which is then used in an assignment function to classify the test
data.

For some unlabelled test datum x̃, the multi-class SWAP-Test classifier requires the test datum, the training data
and their respective labels to be encoded in a quantum state as
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This effectively yields a linear combination of label vectors, 





The contribution of each label vector  is a weighted sum of 


kernel values between the test data and all the training data with that label.

ypred =
L

∑
i=1

αiyi

αi = ∑
m|ym=i

wmk(x̃, xm)

The multi-class swap-test classifier
Measurement



The multi-class swap-test classifier
The predicted vector is then used in the following assignment function:





which is evaluated classically.

ỹ = maxyi
{yi ⋅ ypred}

At first, the significance of ypred may not seem clear. However, we can use the fact that the fidelities that result

from the modified SWAP-Test represent a valid kernel k(x̃,xm) = |〈x̃|xm〉|2. Then, if αi =
"

m|ym=i wmk(x̃,xm) the

predicted vector may be expressed as

ypred =

L!

i=1

αi

%

&
cosφyisinθyi

sinφyi
sinθyi

cosθyi

'

( (9)

or equivalently,

ypred =

L!

i=1

αiyi. (10)

Now, it is apparent that the predicted vector is a linear combination of the label vectors. The weight of each label

vector, αi, is the sum of the kernel values between the test data and the training data that have that label. A high

αi increases the overlap between the ypred and yi and indicates a high similarity between the test datum and the

training data belonging to class yi.

Figure 3: Illustrative predicted vectors that could be obtained by this multi-class SWAP-Test classifier for
problems with (a) 2 classes, (b) 3 classes and (c) 4 classes. According to the assignment function given in

equation 11, the test point will be assigned to the class yi when the inner product between its label vector yi and

the obtained predicted vector is highest. According to the definition of the inner product, the inner product will be its

highest when the angle between the vectors is the smallest. In each of these diagrams, the test point will be assigned

to class y0. Note: these predicted vectors are not obtained from any concrete classification problem.

The predicted vector that has been estimated by the quantum circuits is then used in the following assignment

function

ỹ = maxyi{yi · ypred} (11)

that can be evaluated classicaly. Effectively, the test datum is assigned the class yi when the inner product between

the label vector yi and the predicted vector ypred is the highest. This indicates that yi and ypred have the highest
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Robustness to noise

We also consider the effect of a single 
qubit depolarising channel acting only 
on the label qubit right before the 
required measurement. 

Our analysis shows that the predicted 
vector obtained is only scaled by a 
factor of . 

This has no effect on the outcome of 
the classification. 

(1 − p)

A Multi-Class Quantum Kernel-Based Classifier 11

Figure 4. An illustrative example of how the outlined conditions of
depolarising noise would a↵ect the predicted vector. The predicted vector

will be scaled by a factor of (1 � p). This has no impact on the angle between the

predicted vector and the label vectors so this will have no impact on the classification

outcome. Note: this example is not related to any concrete classification problem.

ỹ = maxyi{kyikkypredkcos�i}

= maxyi{cos�i}, (24)

where we can remove kyik since kyik = 1 for all i and we can remove kypredk since it

is constant for each yi. Then, we can see that the assignment function depends only

on the angle �i between the i
th label vector yi and the predicted vector ypred. It then

becomes apparent that scaling the predicted vector by a factor of (1� p) has no e↵ect

on the assignment function. In this way, the outcome of the classifier is una↵ected by

these conditions of depolarising noise.

In this paper, we have restricted our analysis to the e↵ects of depolarising noise. In

Supplementary Note II, we perform a similar analysis with a single qubit Pauli channel;

the most general single qubit noise model. We show that this channel also only scales

the predicted vector. In this way, the outcome of the classifier is una↵ected by the single

qubit Pauli channel, making it robust to special cases of the single qubit Pauli channel

including bit-flip and phase-flip noise.

2.2.2. Number of Label States Our next consideration involves the number of label

states that can be stored on a single qubit. Due to the design of the classifier, this

number depends on our ability to accurately measure the predicted vector. The number

of predicted vectors we can distinguish on the Bloch sphere will be the number of label

states that we should store on the single label qubit.



Through variance analysis, we show that the 
number of label states that can be accurately 
distinguished on a single qubit grows linearly 
with the number of repetitions of the required 
measurements. 


No . of Label States = O(R)

Number of classes

Figure 5: Ellipses representing the standard error in the measurement of a predicted vector. (a) shows the
ellipse on the Bloch sphere while (b) shows the ellipse on a shrunken Bloch sphere which can be expected under
certain depolarising noise conditions. In each case, the number of label states that should be stored on the label
qubit can be calculated by dividing the area of the sphere by the area of the ellipse.

Ñs =
4π||(1− p))r||2

Area of Ellipse

=
4π(1− p)2||)r||2

A(p)
, (22)

where the Area of Ellipse becomes a function A(p) that is now also dependent on the depolarising parameter p.
A Taylor series expansion of A(p) around the origin (p = 0), up to second order, reveals:

A(p) = A0 +A1p+A2p
2 +O(p3), (23)

where A1 = ∂A(p)
∂p |p=0 and A1 = 1

2
∂2A(p)
∂p2 |p=0.

By substituting this expansion in equation (22), we obtain an expression for the number of label states that ac-
counts for depolarising noise:
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Effectiveness

The effectiveness of the multi-class SWAP-Test classifier is demonstrated by applying 
it to a number of different classification problems.

A Multi-Class Quantum Kernel-Based Classifier 17

Figure 9. The predicted vectors produced through the classification of the
4-XOR dataset. Here, the darker vectors are the predicted vectors that have been

evaluated with depolarising noise (p = 0.1) while the lighter vectors are the predicted

vectors evaluated without depolarising noise. We can see that the predicted vectors

are only scaled down but the angles between the vectors does not change.

using equation (13). To do this, we evaluate each ↵i =
P

m|ym=i wm|hx̃|xmi|
2 directly

as ↵i =
P

m|ym=i wmk(x̃,xm). This is only possible because the methods that we would

use to encode the test and training data in quantum states give rise to kernels k(x̃,xm)

that can be evaluated classically. In some cases, we use the kernel k(x, z) = | hx|zi |2

which would arise from amplitude encoding. In other cases, we use the kernel k(x, z) =Qn
k=1 |cos(xk � zk)|2 which would arise from angle encoding. Once the predicted vector

is constructed, it is then used in the assignment function given in equation (14) to

classify the test point. The results of these experiments can be seen in Table 2. It can

be seen that the accuracies are high, with accuracies greater than or equal to 90% being

obtained for each dataset.

Table 2. The accuracies obtained by the multi-class SWAP-Test classifier when

applied to various datasets.

Dataset # Classes # Features # Points Encoding Accuracy (%)

XOR 2 2 100 Amplitude 100

4 3 200 Amplitude 99

8 4 400 Amplitude 99

Iris 3 4 150 Angle 95

Wine 3 13 144 Angle 92

Digits 10 64 1740 Angle 92

Letter Recognition 12 16 8808 Angle 90

Analytical results



Effectiveness

The effectiveness of the multi-class SWAP-Test classifier is demonstrated by applying 
it to a number of different classification problems.
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Figure 6. The 4-XOR dataset (3 features, 4 classes and 64 points). The dataset
was generated such that data points from the same class would lie directly opposite

each other on a sphere so that the kernel in equation (36) would be most e↵ective.

This reveals that in the worst case:

Ñs ⇠ Ns(1� 5p+ 6p2). (34)

These conditions of depolarising noise decrease the number of label states by at most

(1�5p+6p2). The depolarising parameter that we expect in real experiments is p << 0.1.

According to equation (34), this will have a negligible e↵ect on the number of label states

that can be stored.

3. Results And Discussion

We demonstrate the e↵ectiveness of the multi-class SWAP-Test classifier by applying it

to several diverse multi-class classification problems.

For the numerical simulations, we apply the classifier to a 3-dimensional generated

dataset with 4 classes; 16 data points in each class. This dataset, shown in Figure 6,

will be denoted by 4-XOR since it is inspired by the 2-dimensional XOR dataset. Like

the 2-dimensional XOR dataset, 4-XOR is not linearly separable.

To evaluate the performance of the multi-class SWAP-Test classifier on this dataset,

we perform leave-one-out cross validation. For each data point, we numerically simulate

the circuits that construct the predicted vector using Qiskit’s Statevector Simulator [26].

Supplementary Note IV provides more details on the state preparation required. The

predicted vector is used in the assignment function given in equation (14) to classify

the data point. We first numerically simulate the circuits ideally, with no noise or finite

sampling. We then numerically simulate the circuits with finite sampling and under the

A Multi-Class Quantum Kernel-Based Classifier 16

Figure 8. A more detailed look at the operator UEd that simulates the
depolarising noise in the circuits. Here, Ry is a Y-rotation with ! =

1
2arccos(1�

2p).

classification process. This is illustrated in Figure 9. This is also illustrated in Table 1

where we see that the average norms of the predicted vectors decreases by a factor of

(1� p).

Table 1. The accuracies obtained by the multi-class SWAP-Test classifier when

applied to the generated 4-XOR dataset. The accuracies presented are from numerical

simulations with finite sampling and depolarising noise. The average norms of the

predicted vectors are from numerical simulations with just depolarising noise, to

illustrate the result from Section 2.2.1

Depolarisation Rate (p) Accuracy (%) Av. Norm of Predicted Vector

0 100 0.1356

0.02 100 0.1331

0.04 100 0.1302

0.06 100 0.1275

0.08 100 0.1248

0.1 100 0.1223

We further evaluate the performance of the multi-class classifier on several other

datasets using 5-fold cross validation. These datasets include three generated XOR

datasets, the Iris, Wine and Digits datasets provided by scikit-learn as well as the

Letter Recognition dataset provided by the UCI Machine Learning Repository [19]. It

should be noted that the Wine, Digits and Letter Recognition datasets were artificially

balanced. For the Wine dataset, this was done by uniformly sampling 48 data points

from each class in each dataset. For the Digits dataset, 174 points from each class

were uniformly sampled. Lastly, for the Letter Recognition dataset, 734 points were

uniformly sampled from classes for the letters A-L.

For each test point in these datasets, we evaluate the predicted vector classically

Numerical results



Thank you!


