A MULTI-CLASS **QUANTUM KERNEL-BASED CLASSIFIER**

(Published in Advanced Quantum Technologies, https://onlinelibrary.wiley.com/doi/full/10.1002/qute.202300249)

by Shivani Mahashakti Pillay, Ilya Sinayskiy, Edgar Jembere and Francesco Petruccione

QUANTUM TECHNIQUES IN MACHINE LEARNING 2023

MULTI-CLASS CLASSIFICATION PROBLEM STATEMENT

An *L*-class classification problem can be defined as follows: given a dataset

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_n)\}$$

consisting of pairs (\mathbf{x}_i, y_i) that contain the data $\mathbf{x}_i \in \mathbb{R}^N$ and their respective labels $y_i \in \{1, ..., L-1\}$, determine the label $y_i \in \{1, \dots L - 1\}$ corresponding to some new, unseen datum $\tilde{\mathbf{x}}$.

QUANTUM KERNELS WHAT IS A QUANTUM KERNEL?

Given two classical datapoints, a quantum kernel can be estimated as the squared state overlap between quantum states encoding these two datapoints.

datapoints x and z is

$$k(\mathbf{x}, \mathbf{z}) = |\langle \Phi(\mathbf{z}) | \Phi(\mathbf{x}) \rangle|^2$$

If $U_{\Phi}(\mathbf{x})$ defines some unitary operation that encodes the classical datum \mathbf{x} into an *n*-qubit quantum state as $|\Phi(\mathbf{x})\rangle = U_{\Phi}(\mathbf{x})|0\rangle^{\otimes n}$ then the kernel of two classical

ESTIMATING QUANTUM KERNELS

The Inversion Test

The SWAP-Test

THE BINARY SWAP-TEST CLASSIFIER

The binary SWAP-Test classifier is a quantum kernel method that allows us to estimate a weighted power sum of kernel values between a test datum and all the training data

THE MULTI-CLASS SWAP-TEST CLASSIFIER

The Multi-Class SWAP-Test Classifier is inspired by the binary SWAP-Test classifier [1,2].

[1] Blank C, Park DK, Rhee JK, Petruccione F. Quantum classifier with tailored quantum kernel. npj Quantum Information. 2020 May 15;6(1):41.

[2] Park DK, Blank C, Petruccione F. Robust quantum classifier with minimal overhead. In2021 International Joint Conference on Neural Networks (IJCNN) 2021 Jul 18 (pp. 1-7). IEEE.

2].

THE MULTI-CLASS SWAP-TEST CLASSIFIER

following format:

Given an L-class classification problem, the classifier is realised by first preparing a quantum state encoding the test datum $\tilde{\mathbf{x}}$, the training data $\{\mathbf{x}_m\}_{m=1}^M$ and their respective labels $\{y_m\}_{m=1}^M$ in the

 $|\Psi\rangle = \sum_{n}^{m} \sqrt{w_m} |0\rangle |m\rangle |\mathbf{x}_m\rangle |\tilde{\mathbf{x}}\rangle |y_m\rangle$

THE MULTI-CLASS SWAP-TEST CLASSIFIER **STORING OF LABELS**

Each label is mapped to a unique label state: $y_i \rightarrow |y_i\rangle$

Each label state

$$|y_i\rangle = \cos\left(\frac{\theta_{y_i}}{2}\right)|0\rangle + e^{i\phi_{y_i}}\sin\left(\frac{\theta_{y_i}}{2}\right)|1\rangle$$

with $0 \le \theta_{y_i} \le \pi$ and $0 \le \phi_{y_i} \le 2\pi$ can be represented as a Bloch vector: $\mathbf{y}_{i} = \begin{pmatrix} \cos\phi_{y_{i}}\sin\theta_{y_{i}} \\ \sin\phi_{y_{i}}\sin\theta_{y_{i}} \end{pmatrix}$ $\cos\theta_{y_i}$

THE MULTI-CLASS SWAP-TEST CLASSIFIER MEASUREMENT

A modified SWAP-Test, involving a state reconstruction of the qubit storing the label states, is then performed on the prepared state.

THE MULTI-CLASS SWAP-TEST CLASSIFIER MEASUREMENT

This effectively yields a linear combination of label vectors,

y_{pred}

kernel values between the test data and all the training data with that label.

$$= \sum_{i=1}^{L} \alpha_i \mathbf{y_i}$$

The contribution of each label vector $\alpha_i = \sum w_m k(\tilde{\mathbf{x}}, \mathbf{x}_m)$ is a weighted sum of $m|\mathbf{y}_m = i$

THE MULTI-CLASS SWAP-TEST CLASSIFIER

The predicted vector is then used in the following assignment function:

which is evaluated classically.

$$\mathbf{x}_{y_i} \{ \mathbf{y_i} \cdot \mathbf{y}_{pred} \}$$

ROBUSTNESS TO NOISE

We also consider the effect of a single qubit **depolarising** channel acting only on the label qubit right before the required measurement.

Our analysis shows that the predicted vector obtained is **only scaled** by a factor of (1 - p).

This has **no effect** on the outcome of the classification.

NUMBER OF CLASSES

Through variance analysis, we show that the number of label states that can be accurately distinguished on a single qubit **grows linearly** with the number of repetitions of the required measurements.

No. of Label States = O(R)

EFFECTIVENESS **ANALYTICAL RESULTS**

it to a number of different classification problems.

Dataset	# Classes	# Features	# Points	Encoding	Accuracy (%)
XOR	2	2	100	Amplitude	100
	4	3	200	Amplitude	99
	8	4	400	Amplitude	99
Iris	3	4	150	Angle	95
Wine	3	13	144	Angle	92
Digits	10	64	1740	Angle	92
Letter Recognition	12	16	8808	Angle	90

The effectiveness of the multi-class SWAP-Test classifier is demonstrated by applying

EFFECTIVENESS NUMERICAL RESULTS

it to a number of different classification problems.

The effectiveness of the multi-class SWAP-Test classifier is demonstrated by applying

on Rate (p)	Accuracy $(\%)$	Av. Norm of Predicted Vecto
)	100	0.1356
)2	100	0.1331
)4	100	0.1302
)6	100	0.1275
)8	100	0.1248
1	100	0.1223

)r

THANK YOU!