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Quantum models

f(x)

The measured output of a qguantum model Is a partial Fourier series

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical
Review A 103.3 (2021): 032430.
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Quantum models
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Feature map Ansatz
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Conventional quantum models have trainable coefficients and fixed frequencies
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Quantum models
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Conventional quantum models have reqgularly spaced frequencies
They are universal in the asymptotic limit, but is that useful In practise?
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Trainable frequency guantum models
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Trainable frequency
feature map (TFFM)

Including B In the feature map generator leads to a trainable frequency model
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Proof-of-principle results
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Proof-of-principle results

N=3 qubits
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Proof-of-principle results
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Proof-of-principle results
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Proof-of-principle results
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Proof-of-principle results
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Proof-of-principle results
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Proof-of-principle results
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Practical benefit of TF models
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Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep Learning (Part Il): Data-driven Discovery of Nonlinear Partial Differential
Equations." arXiv preprint arXiv:1711.10566 (2017).
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Differentiable guantum circuits (DQC)
algorithm
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Kyriienko, Oleksandr, Annie E. Paine, and Vincent E. Elfving. "Solving nonlinear differential equations with differentiable quantum circuits." Physical Review A 103.5 (2021):
052416.
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Practical benefit of TF models
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Practical benefit of TF models

FF model

TF model (ours)
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Conclusion

* The output of conventional guantum
models are Fourier series with
regularly spaced fixed frequencies.

* Introducing trainable parameters into
the feature map generator leads to
models with trainable frequencies.

* We can expect practical improvements
on problems where the optimal
spectral decomposition Is
(a) non-regularly spaced or (b)
has unknown spectral richness.

°* This Is often the case In reality!

Ansatz
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DISCcusSsIon

New Insight

Hybrid quantum-classical networks are using a classical neural network to set the
frequencies of a quantum neural network.

Mari, Andrea, et al. "Transfer learning in hybrid classical-quantum neural networks." Quantum 4 (2020): 340.
Jaderberg, Ben, et al. "Quantum self-supervised learning." Quantum Science and Technology 7.3 (2022): 035005.
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Proof-of-principle results
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Practical benefit of TF models

Goal: N=6, L=8, 192 parameters
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Practical benefit of TF models
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Practical benefit of TF models

Overparameterised regime: L=64, 804 parameters
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DISCcusSsIon

TF models can fall-back to conventional FF models

There is a trivial initialisation of 6 which allows us to prepare regularly spaced

orthogonal frequencies as the starting point. If this is the optimal spectrum, we will
remain close to it (not rigorous).
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