Let Quantum Neural Networks Choose Their Own Frequencies

Ben Jaderberg, Antonio Gentile, Youssef Berrada, Elvira Shishenina, Vincent E. Elfving

https://arxiv.org/abs/2309.03279

(Variational) quantum machine learning nodels

Feature map

(Variational) quantum machine learning nodels

 $\hat{U}_F(\vec{x}) = \bigotimes e^{-\frac{i}{2}\hat{G}_m(\gamma_m)}\phi(\vec{x})$ M

Feature maps

 $\hat{U}_F(\vec{x}) = \bigotimes e^{-\frac{i}{2}\hat{G}_m(\gamma_m)}\phi(\vec{x})$ M

 $\hat{U}_F(\vec{x}) = (\mathbf{x}) e^{-\frac{i}{2}\hat{Y}_m x}$ M $\phi(\vec{x}) = x$

Feature maps

 $\hat{U}_F(\vec{x}) = \bigotimes e^{-\frac{i}{2}\hat{G}_m(\gamma_m)}\phi(\vec{x})$ M

Quantum models

 $f(\vec{x}, \vec{\theta}_A) = \sum$ $\vec{\omega}$

The measured output of a quantum model is a partial Fourier series

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical Review A 103.3 (2021): 032430.

$$\sum_{j\in\Omega} \vec{c}_j(\vec{\theta}_A) e^{i\vec{\omega}_j\cdot\phi(\vec{x})}$$

Quantum models

$\hat{G} = \sum \gamma_m \hat{Y}_m \in \mathbb{R}^{2^n \times 2^n}$ M $\hat{G} | \psi \rangle = \lambda_i | \psi \rangle$

PASQAL https://arxiv.org/abs/2309.03279

The frequencies of the Fourier series depend on the eigenvalues of the generator

Quantum models

Conventional quantum models have regularly spaced frequencies They are universal in the asymptotic limit, but is that useful in practise?

$e^{ix} + e^{i2x} + e^{i3x} + \dots$ **Orthogonal basis functions**

Trainable frequency quantum models

feature map (TFFM)

Including θ_f in the feature map generator leads to a trainable frequency model

 $\hat{U}_F(\vec{x}) = \bigotimes e^{-\frac{i}{2}\hat{Y}_m x}$

PASQAL https://arxiv.org/abs/2309.03279

$$\Omega_d = \{1.5, 3, 4.5\}$$

$$\lambda = \{-\frac{3}{2}, -\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{$$

Given a trivial classical resource of trainable scaling of the input

PASQAL https://arxiv.org/abs/2309.03279

$$\Omega_d = \{1, 1.2, 3\}$$

$\lambda = \{-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\}$ $\Delta = \{1, 2, 3\}$

		1.00 -	
No global scaling of the		0.75 -	4
data can enable the fixed		0.50 -	1
generator eigenspectrum		0.25 -	
to contain gaps with	>	0.00 -	
unequal spacing.	-	-0.25 -	
	-	-0.50	

-0.75

-1.00

PASQAL https://arxiv.org/abs/2309.03279

$$\Omega_d = \{1, 1.2, 3\}$$

$\Delta = \{1, 2, 3\}$

N=3 qubits L=4 HEA layers

$$\Omega_d = \{1, 1.2, 3\}$$

Proof-of-principle results Spectrum Simple

Tower

Proof-of-principle results FFFM $\hat{U}_F(\vec{x}) = \bigotimes e^{-\frac{i}{2}\gamma_m \hat{Y}_m x}$ M Spectrum $\gamma_m = 1$ Simple $\gamma_m = m$ Tower Exponential $\gamma_m = 2^{(m-1)}$

$$y(x) = \frac{1}{|\Omega_d|} \sum_{\omega_d \in \Omega_D} \cos(\omega_d x)$$

$$\Omega_{d_1} = \{1\}$$

$$\Omega_{d_2} = \{1,3\}$$

$$\Omega_{d_3} = \{1,2,3\}$$

....

$$\Omega_{d_7} = \{1,\frac{4}{3},\frac{5}{3},2,...,3\}$$

Goal: Learn a solution to the Navier-Stokes equations for fluid passing over a circular cylinder.

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{\partial p}{\partial x} &= 0, \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} - \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{\partial p}{\partial y} &= 0, \end{aligned}$$
$$\begin{aligned} Re &= 100 \end{aligned}$$

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations." arXiv preprint arXiv:1711.10566 (2017).

Ŋ

PASQAL https://arxiv.org/abs/2309.03279

N=6, L=8, 192 parameters

Differentiable quantum circuits (DQC) algorithm

Kyriienko, Oleksandr, Annie E. Paine, and Vincent E. Elfving. "Solving nonlinear differential equations with differentiable quantum circuits." Physical Review A 103.5 (2021): 052416.

Given a QNN representing f(x), we can obtain df/dx using derivative quantum circuits

PASQAL https://arxiv.org/abs/2309.03279

TF model (ours)

PASQAL https://arxiv.org/abs/2309.03279

FF model

TF model (ours)

Conclusion

- The output of conventional quantum models are Fourier series with regularly spaced fixed frequencies.
- Introducing trainable parameters into the feature map generator leads to models with trainable frequencies.
- We can expect practical improvements on problems where the optimal spectral decomposition is (a) non-regularly spaced or (b) has unknown spectral richness.
- This is often the case in reality!

Discussion New insight

Hybrid quantum-classical networks are using a classical neural network to set the frequencies of a quantum neural network.

Mari, Andrea, et al. "Transfer learning in hybrid classical-quantum neural networks." Quantum 4 (2020): 340. Jaderberg, Ben, et al. "Quantum self-supervised learning." Quantum Science and Technology 7.3 (2022): 035005.

Acknowledgements PASQAL

Vincent Elfving

Andrea Gentile

Goal: Predict u, v and p

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{\partial p}{\partial x} &= 0, \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} - \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{\partial p}{\partial y} &= 0, \end{aligned}$$

+ 1% of data as boundary condition

PASQAL https://arxiv.org/abs/2309.03279

N=6, L=8, 192 parameters

600 batch size 5,000 training iterations

Overparameterised regime: L=64, 804 parameters

TF model

5

-0.2

Х

р

6

-0.1

Discussion

TF models can fall-back to conventional FF models

There is a trivial initialisation of θ which allows us to prepare regularly spaced orthogonal frequencies as the starting point. If this is the optimal spectrum, we will remain close to it (not rigorous).

$$\begin{array}{c} |0\rangle & - R_{y}(\theta_{1}x) \\ |0\rangle & R_{y}(\theta_{2}x) \\ |0\rangle & R_{y}(\theta_{3}x) \end{array}$$

