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Quantum models

The measured output of a quantum model is a partial Fourier series
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Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical 

Review A 103.3 (2021): 032430.



Quantum models

The frequencies of the Fourier series depend on the 
eigenvalues of the generator
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Quantum models

Conventional quantum models have trainable coefficients and fixed frequencies
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Quantum models

Conventional quantum models have regularly spaced frequencies
They are universal in the asymptotic limit, but is that useful in practise?
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𝑒𝑖𝑥 + 𝑒𝑖2𝑥 + 𝑒𝑖3𝑥+. . .
Orthogonal basis functions



Trainable frequency quantum models

Including θf in the feature map generator leads to a trainable frequency model
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Proof-of-principle results

N=3 qubits
L=4 HEA layers
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Given a trivial 
classical 

resource of 
trainable scaling 

of the input
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No global scaling of the 
data can enable the fixed 
generator eigenspectrum 

to contain gaps with 
unequal spacing.
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Practical benefit of TF models
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Goal: Learn a solution to 
the Navier-Stokes 

equations for fluid passing 
over a circular cylinder.

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential 

Equations." arXiv preprint arXiv:1711.10566 (2017).

N=6, L=8, 192 parameters

600 batch size
5,000 training iterations



Differentiable quantum circuits (DQC) 
algorithm

Let quantum neural networks choose their own frequencies https://arxiv.org/abs/2309.03279

Kyriienko, Oleksandr, Annie E. Paine, and Vincent E. Elfving. "Solving nonlinear differential equations with differentiable quantum circuits." Physical Review A 103.5 (2021): 

052416.

Given a QNN 
representing f(x), we can 

obtain df/dx using 
derivative quantum 

circuits



FEM TF model (ours) FF model
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Conclusion
• The output of conventional quantum

models are Fourier series with 
regularly spaced fixed frequencies.

• Introducing trainable parameters into
the feature map generator leads to
models with trainable frequencies.

• We can expect practical improvements
on problems where the optimal 
spectral decomposition is 
(a) non-regularly spaced or (b) 
has unknown spectral richness.

• This is often the case in reality!
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Discussion
New insight

Hybrid quantum-classical networks are using a classical neural network to set the 
frequencies of a quantum neural network.
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Mari, Andrea, et al. "Transfer learning in hybrid classical-quantum neural networks." Quantum 4 (2020): 340.

Jaderberg, Ben, et al. "Quantum self-supervised learning." Quantum Science and Technology 7.3 (2022): 035005.
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N=3 qubits
L=4 HEA layers
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Practical benefit of TF models
Goal: 

Predict u, v and p

N=6, L=8, 192 parameters
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+ 1% of data as boundary 
condition

600 batch size
5,000 training iterations



Practical benefit of TF models
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Min Mean Max



FEM TF model FF model

Practical benefit of TF models

Overparameterised regime: L=64, 804 parameters
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Discussion
TF models can fall-back to conventional FF models

There is a trivial initialisation of θ which allows us to prepare regularly spaced 
orthogonal frequencies as the starting point. If this is the optimal spectrum, we will 
remain close to it (not rigorous).
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𝜃𝑚 = 1Simple

𝜃𝑚 = 𝑚Tower

𝜃𝑚 = 2(𝑚−1)Exponential


