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gello im diego garxia martin ans today i
want to talk about gaoa maxcut.

no, ictually im not siego diego is this
awesome and very good looking guy here
depicted.
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The landscape of QAOA Max-Cut Lie algebras
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If you go deep, dont forget your initialization!
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what is this talk about?



i b
i L
f




barren
Deep (= poly depth) plateau
QAOA ansatz

L/ random init




Variational Quantum Algorithms
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Update parameters to
minimize



The Barren Plateau problem:  Vary[Cy] € O( expl(n))

Expectation values concentrate (over landscape): if I sample points with vhp I will not be able to see a
difference from the mean — cannot determine descent direction with poly shots

why do BPs happen?

e oA ot pate 0= spang ({iH; P € u(d)

Intuition: the DLA constitutes the fingerprint of a PQC g
since it characterizes its (potential) expressiveness Vo, U(G) ce’ C U(d)

Conjecture ML21’: Var ~ 1/dimg (more expressive = more concentrating)

[*] ML21": ML et al., Diagnosing barren plateaus with tools from quantum optimal control, Quantum 6, 824 (2022).



RESOLVED RECENTLY (SEPT23)!

just the typical QIP deadline situation... two proofs for the conjecture came out simultanously!

A Unified Theory of Barren Plateaus
for Deep Parametrized Quantum Circuits
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Variational quantum computing schemes have received considerable attention due to their high
versatility and potential to make practical use of near-term quantum devices. At their core, these
models train a loss function by sending an initial state through a parametrized quantum circuit, and
evaluating the expectation value of some operator at the circuit’s output. Despite their promise,
it has been shown that these algorithms can exhibit barren plateaus induced by the expressive-
ness of the parametrized quantum circuit, the entanglement of the input data, the locality of the
observable or the presence of hardware noise. Up to this point, these sources of barren plateaus
have been regarded as independent and have been studied only for specific circuit architectures.

The Adjoint Is All You Need:
Characterizing Barren Plateaus in Quantum Ansétze

Enrico Fontana,"? Dylan Hemmn." Shouvanik Chakrabarti,! Niraj Kumar,'
Romina Yalovetzky,! Jamie Heredge,!? Shree Hari Sureshbabu,! and Marco Pistoial
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Using tools from the representation theory of compact Lie groups we formulate a theory of Barren
Plateaus (BPs) for parameterized quantum circuits whose observable lies in its dynamical Lie algebra
(DLA), a setting that we term Lie-algebra Supported Ansatz (LASA). A large variety of commonly
used ansitze such as the Hamiltonian Variational Ansatz, Quantum Alternating Operator Ansatz,
and many equivariant quantum neural networks are LASAs. In particular, our theory provides for
the first time the ability to compute the gradient variance for a non-trivial, subspace uncontrollable
family of quantum circuits, the quantum compound ansétze. We rigorously prove that the variance
of the circuit gradient, under Haar initialization, scales inversely with the dimension of the DLA,
which agrees with existing numerical observations.

Conjecture ML21’: Var ~ 1/dimg (more expressive = more concentrating)

new result:
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“new physics”: (besides the conjectured dependence on
expressiveness) the exact expression provides
unforeseen connection between DLA and two other
reported causes of BP: entanglement and locality.

it is official: symmetry = less concentration = less QPU
time for a given task

Remark: the theory assumes O in g. Luckily, this is the case of QAOA (and other popular VQAS).

For a theory beyond this constraint see:

Diaz et al., Showcasing a Barren Plateau Theory Beyond the Dynamical Lie Algebra, arXiv:2310.11505 (2023).



MAXCUT and QAOA

QAOA: variational quantum algorithm with
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MAXCUT and QAOA: various ansatzes

Standard Orb Free
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Sn, symmetric group. Its action on graphs generates new (isomorphic) graphs.
Automorphism group (graph): graph-dependent subgroup of Sn that leaves a given graph invariant.

Aut(complete graph ) = Sn
Aut(random graph n>>) = trivial — in this regime (the relevant for maxcut) orb = free!



FREE/MA ANSATZ: Dynamical Lie Algebra

Theorem 1 Given a connected graph, the DLA
for the multi-angle QAOA ansatz geee falls into
one of the six families depicted in table.

We can completely characterize and
classify the MA-QAOA DLAs for any
graph.

Table 1I. Free ansatz. Six families of connected graphs with
n = 2 vertices are identified by their generated Lie algebras.

Graph Free-mixer Lie algebra g, C su(2™) C c2"*2"
Example  Bipartite its dimension its reductive decomposition

Path O,Oﬂfo yes 2n—n s50(2n)

Cycle O isiiill An?—2n 50(2n)®sa0(2n)
f:‘;:l_c/m yes 22n-2_gn-1 so(2" Y)@sa(27 1)
?‘;J‘;]' C/I\) yes 92n-2 gn-1 sp(2™ Li@sp(2m1)
E&sn‘ M yes 92n-2_ 1 su(2m-1)

Other @ no 92n-1_o9 su(2" Y)gsu(27 1)

relevant case:

g =su(d/2) @ su(d/2)




FREE ANSATZ: Exact Variance

Corollary 1 (Exact Variance Multi-Angle BPs (informal)) Consider a graph in the
“other” category. Then, let 0,C(~,3) be the partial derivative of the cost. Given enough depth,
we find

d|E|

S Dt <OV, (1)

Var, g[0,C(v,8)] =

where |E| is the number of edges.

For all relevant graphs, MA-QAOA exhibits BP.
Trivially, same holds for ORB.



STD ANSATZ.

slightly more nuanced but:

g ~ Opree = 5U(d/2) @ su(d/2)

consequence: standard QAOA follows same fate... almost universal DLA that
combined with deep ansatz + random initialization means a no go.



DISCUSSION:

e QAOA doesnt seem to be much of a “problem-inspired” ansatz after all.
EXACTLY same DLA for different graphs!

In the deep regime the graph-dependent information —except automorphisms— gets
washed out. We did maxcut but expect same to happen in other combinatorial opt
problems.

e “Loopholes” and opportunities:
o shallow regime: specific graph topology not washed out.
We don't have a theory for BP here but would guess this regime is
trainable. It's not obvious to me how powerful this regime is / how
truly quantum (at least expectation values). Work is needed!

o Deep Initializations: if you are going deep don't forget to bring them.
For some reason you are able to initialize in the narrow gorge and
use QAOA to do a final tweaking.



Thanks for your
attention! Questions?

LANL




FREE ANSATZ: Barren Plateau with a single layer!

When the graph has O(n) edges — o] 3-Regular graph
. Q
even a single layer of MA-QAOA
exhibits a BP. °
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