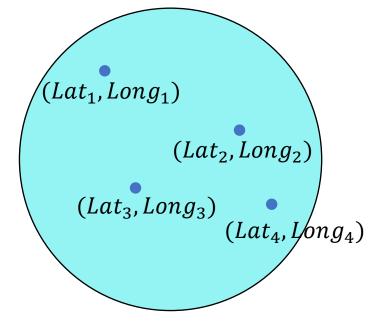


Rahul Arvind, Kishor Bharti, Khoo Jun Yong, Koh Enshan Dax, and Kong Jian Feng

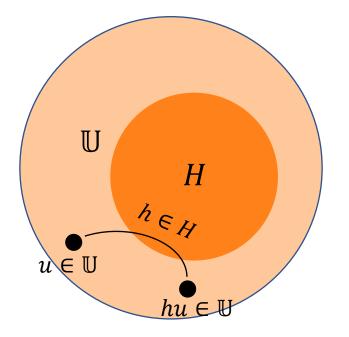


A*STAR Quantum Innovation Centre (Q.InC), Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR).

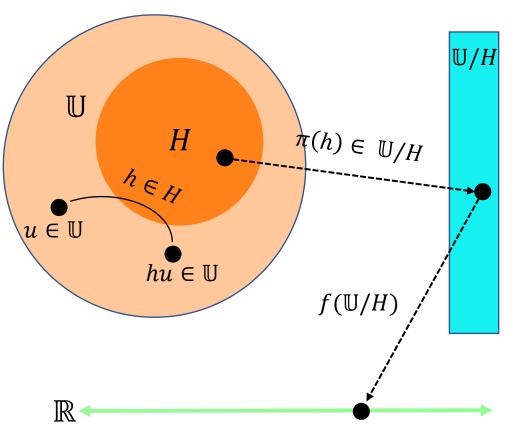
arXiv:2309.05253

Symmetries in tasks

Task: I give you a globe and ask you to throw darts at it. I want a uniform sample of longitudes.



Throw darts across the globe.

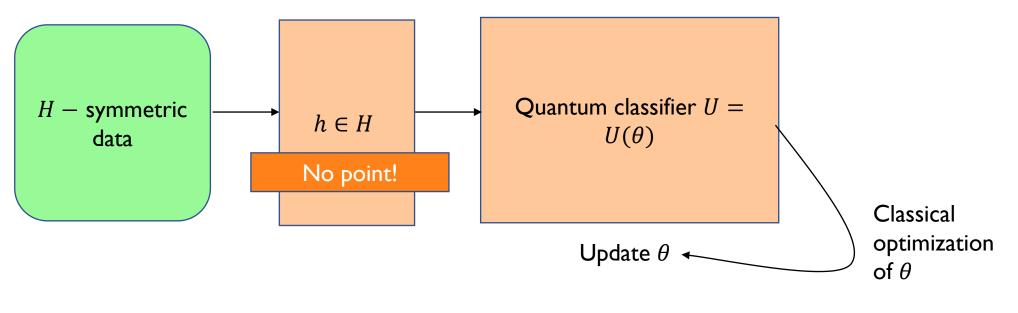

 $(Lat_2, Long_2)$ We are sampling points up to a symmetry! $(Lat_1, Long_1)$ $(Lat_1|Long_2)$

Fix the equator, and only throw darts here!

Homogeneous Spaces of the unitary group

- $u_1 \sim u_2 \Rightarrow u_1 = hu_2$ for some $h \in H$.
- Equivalence relations \Rightarrow Equivalence classes $\Rightarrow \mathbb{U}/H$.

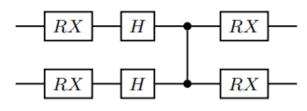
• Functions from $\mathbb{U}/H \to \mathbb{R}$ map every H — related element in \mathbb{U} to the same point in \mathbb{R} .


We are dividing out the symmetry!

Sampling \mathbb{U} up to a symmetry H: Sampling on \mathbb{U}/H

Sampling on \mathbb{U}/H : just sample on \mathbb{U} , send to equivalence class.

Quantum machine learning up to a symmetry


Key Idea

Start with a state $|\psi\rangle$ and want to learn the unitary $U(\theta_{opt})$ --- if your data is H symmetric, we could require that $|\psi\rangle$ and $h|\psi\rangle$ should be treated the same way.

Expressibility, up to a symmetry

$$E^{\mathbb{U}/H} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \min_{\theta} \mathcal{D}_{\mathbb{U}/H}(|i\rangle_{\mathbb{U}/H}, |\psi(\theta)\rangle)$$

$H = \{I, SWAP\}$ RX RY RX RY(a) Circuit 1

(b) Circuit 2

Circuit #	$E^{\mathbb{U}(4)/H}_{\mathscr{A}}$	Expr from [29]
Circuit 1	0.070 ± 0.001	0.095 ± 0.002
Circuit 2	$0.204 \pm < 10^{-3}$	0.216 ± 0.012

FIG. 3: The table shows the values of the expressibilities calculated using the homogeneous expressibility scheme as well as the expressibility in [29].

29: arXiv: 1905.10876, Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms, Sim, Sukin and Johnson, Peter D. and Aspuru-Guzik, Alán

Features:

- Adding parametrized gates does not worsen the expressibility.
- If a symmetry is `stronger' than another, it is `easier' to be highly expressible.
- Appending a symmetry creating element to the circuit makes it expressible in $\mathbb U$

Outlook (up to a symmetry)

- If you have a system where you need unitary operators, up to a symmetry ---homogeneous spaces provide a natural setting. Our paper: t -- designs and
 pseudo-randomness as well (happy to discuss afterwards!)
- Random sampling on homogeneous spaces with the tools that we have.
- Expressibility up to a symmetry --- realistic!
- Future work: anywhere where you can think of the words up to a symmetry ③