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Equivariant Quantum Models

❏ Theory for Equivariant Quantum Neural Networks, arXiv:2210.08566 (2022)

+ other GQML:

❏ Group-Invariant Quantum Machine Learning, PRX Quantum 3, 030341 (2022)

❏ Representation Theory for Geometric Quantum Machine Learning, arXiv:2210.07980 (2022)

❏ Theoretical Guarantees for Sn-Equivariant Quantum Neural Networks, arXiv:2210.09974 (2022)

❏ Building spatial symmetries into quantum circuits for faster training, arXiv:2207.14413 (2022)

Outline:

- We will begin by explaining where the motivation for this program comes from: classical geometric deep learning (GDL).

- Then we will define what GQML intends to be: a set of guidelines / recipes to achieve invariant/equivariant quantum models.

- We will argue that symmetry = improved performance in terms of #shots, parameters and data.

- We will end up with discussion and an outlook to what comes next!



how do we choose how to correlate gates?



Geometric Deep Learning (GDL)*

* Cohen and Welling, Group equivariant convolutional networks, ICML, 2016.

* Bronstein et al, Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, arXiv:2104.13478, 2021.
* GitHub Chen-Cai-OSU / awesome-equivariant-network for GDL bibliography summary.

broad motivation: classical

Building symmetry into ML has led to major breakthroughs.
○ imposing translational symmetry and parameter sharing allowed deep CNNs to 

overthrow fully connected architectures ‘essentially solving’ computer vision.
○ GDL conceptualizes CNN success (symmetry exploitation) and generalizes it to tasks with 

other symmetries.
○ As we will see, quantum ml is no different and we can not only verify but also rigorously 

quantify the advantages of enforcing symmetry in our architectures.

https://github.com/Chen-Cai-OSU
https://github.com/Chen-Cai-OSU/awesome-equivariant-network


modeldata

example setting: Supervised Learning
train a model on labelled data to make predictions on new data.

Prediction

‘cat’???



We will say such label-producing f is group-symmetric (or invariant). 

‘cat’

Geometric Deep Learning (GDL): lets exploit symmetry in ML models!

main concept: Label Symmetry
certain learning tasks have labels that are invariant under some set of transformations acting on the data

By imposing invariance we constrain the search to smaller region 
→ less parameters, better generalization with less data. 

This is the kind of prior we are looking for the parameter correlation design!



clarification: We are asking the models to be invariant, not the data itself!

…otherwise we would be looking at circular (or even spherical) cats like a righteous physicist
would do. We are NOT!

not invariant invariant



Instead, it is strongly desirable to have models that are invariant by design, i.e. for all theta.

issues:
data and parameter inefficient

even if we learn some theta that makes model invariant, no guarantee of invariance over unseen data.

Predictionmodel

Feed augmented data and hope the model “learns” the invariance.

Data Augmentation. Brute-forcing group-invariance.



setting: Quantum Neural Network (QNN) -based Supervised Learning

Data
Measurement

QNN



proposal: 

Geometric QML[1] = QML + Geometric DL
We want models that are by construction group-invariant

How do we achieve this? GQML’s blueprint for invariant models

Equivariant circuit

Equivariant Embedding invariant measurement



How exactly to implement and parametrize

equivariant linear maps,
and in particular

○ The equivariant encoding

○ The equivariant unitaries and CPTP channels – aka EQNN layers

○ The Invariant measurement

Each of these can be parametrized!
Input and output reps are fixed by problem,

Middle EQNN layers have freedom of rep

Once we fix these, there is a well define space

we can parametrize and explore

NOT TODAY, BUT CHECK OUT
*Nguyen et al., Theory for equivariant

quantum neural networks, (2022).



Invariance vs Equivariance: (property of a map f)

cat
dog

f

cat
dog

f

g in G

Output of f is scalar, but more importantly, the group action is the trivial!



Invariance vs Equivariance

f

f

g



Invariance AND Equivariance

Invariance is just the case of \cdot = trivial rep



feature maps need not be scalar-valued.

From scalar to vector feature maps
Example: segmentation

model

Just like before: Equivariant encoding and QNN.
New: replace single invariant observable by a tensor of them that holds the same rep as Y.
→ You automatically get equivariance of the composite quantum feature map



Example: Sn-INvariant problems: 
Want to learn a property of n-elements that doesn’t depend on ordering (think graphs, n copies 
of a quantum state, etc., very common!) 

Example: learning problems on graphs have labels that are invariant under Sn action! 
e.g. graphs related by node permutations  (‘relabellings’) are isomorphic

same number of 4-cliques
#subgraphs = PI property

→ we want a PI model!
Measure PI operator, e.g. sum Xi

→ Quantum graph invariants!



Example: Sn-EQUIvariant problems:

*Thabet et al, Extending Graph Transformers with Quantum Computed Aggregation." 2022

Now, lets say we want vector output → measure set of PE operators, e.g. { X_i }

→ vi(x,th) = < rho_th(x), Zi> 

Sanity check: if vector of obs = all trivial irreps, e.g. { sum Xi, sum Yi, sum ZiZj, XXXXXX}

Then 

v(sg x) = v(x)

Now automatically the vector of exp values satisfies

v(sg x) = sg v(x)

This is ideal for integrating in larger scheme, e.g. GNN* → quantum equivariant
features! 



expressiveness

locality

entanglement

Resolved Conjecture ML21’: Var ~ 1/dimg   (more 

expressive = more concentrating)

it is official: symmetry =  smaller DLA

less concentration = less QPU use to resolve 

loss/gradients.

Provable Benefits:

● Gradients: symmetry = smaller DLA1,2

● Local minima / overparametrization3: smaller DLA = easier 

overparametrization

● Generalization4: less parameters = simpler model = better generalization w 

less data. 

1 Ragone et al, A unified theory of barren plateaus for deep parametrized quantum circuits, Arxiv, (2023)

2 Fontana et al, The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ansatze, Arxiv, (2023).

3 Larocca et al, Theory of overparametrization in quantum neural networks, Nature Computational Science 3.6 (2023): 542-551.

4 Caro et al., Generalization in quantum machine learning from few training data, Arxiv, (2021).



Flash Demonstration:

GS classification (qdata) with SU(2)-equivariant QCNNs
Problem and model:
● Classification: ground state classification problem
● Symmetry: SU(2)
● Model: SU(2)-equivariant QCNN + SU(2)-equivariant observable 

invariant observable

e.g. XXX-interaction

equivariant observables: e.g. <Sx,Sy,Sz>

(or any other subset of operators forming a spin rep)



We have

● the why: motivated the need for equivariant models –performance!
● the how: layed down a blueprint for achieving equivariant models –equivariant encoding, QNN 

and measurements.
● Established advantages of expoiting symmetry:

Dim (G-equivariant DLA) < dim(DLA) → less expressiveness (more problem focused)
■ Larger gradients
■ Easier landscape (local minima/overparametrization)
■ better generalization

Remark: encoding  / quantum channel / decoding need not be parametrized!

Some open questions / future directions

● Performance demonstration: not too many demonstrations of the theoretical outperformance

● Implementation:– EQUIVARIANTIZE your favorite model now!

● Parameter/Data Concentration: it is crucial that the variance of the model over params and data 

is not too concentrated, because otherwise (with not too many shots) “its a machine that produces 

same feature for different data instances”, useless.

● Power and Advantage: what is the actual power of these. Can we find quantum classical 

separations?

Outlook / Discussion



Thank you! Questions?

SUMMER SCHOOL GOOGLE LANL

GQML collabs



IS THIS 

EQUIVARIANCE

HERE IN THE ROOM 

WITH US?



EQUIVARIANTIZE

YOUR MODEL!



Blueprint for Equivariant Models / Features

model

Just like before: Equivariant encoding and QNN.
New: measure not one but a set of equivariant operators {Oj} with the property that the vector space
span{Oj} is a G-module.



Sn-EQUIvariant problems:

instead of predicting some scalar function for the whole graph, we may want some ‘vector’ function, e.g. a scalar for each 

node, for each edge, for each k-clique.

Instead of measuring single observable measure a vector of them

because the set of vectors already holds a representation of Sn, in this case C{Z_i} = standard sn irrep

we automatically get that v(sg x) = sg v(x)

sanity check: if we choose set of observables forming trivial rep, e.g. a single observable that commutes with G, we get back

invariance!

vi(x) = < rho_th(x), Zi> → 

if rho_th(x) is equivariant and i consider sg on x

sg * v(x) transforms as the std rep of Sn

→ the vector of expectation values will have a Sn action and we can ask the global model to commute with the symmetry 

action.



The reason this are called Fourier basis is direct generalization of actual Fourier transform.

Given a f(t) in H holding an action of u1 group via g*f = f(g-1)

We.can find a new basis for H called.fourier such that

The action of the group is now block diagonal. Here diag.

Now, if we want an invariante action we make sure we act on the trivial subps.



At this point, we need to:

● explain how exactly to achieve equivariance of a linear map, and in 

particular

○ equivariant encoding

○ equivariant unitaries and CPTP channels

○ invariant measurement

This produces invariant model h

● More generally, we can in aim at equivariant models satisfying.

● Two reasons:

○ we actually care about tensor outputs, e.g. predict vector field.

○ we care about scalar output but want to integrate this as a 

component in a larger model – e.g. in a classical ENN , input is 

vector data not scalars!

● Benefits of equivariance



Example : graph classification (cdata) with Sn-equivariant QNNs [1].

[5] L. Schatzki, ML, F. Sauvage, and M. Cerezo, ‘Theoretical guarantees for permutation-equivariant quantum neural networks’, (2022).

Permutation invariant problem
(graph learning)

Embedding:

QNN: generators = { sum Xi , 
sum Yi, sum ZiZj }

Measurement: sum XiXj


