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Variational quantum machine learning is an extensively studied application of near-term quan-
tum computers. The success of variational quantum learning models crucially depends on finding
a suitable parametrization of the model that encodes an inductive bias relevant to the learning
task. However, precious little is known about guiding principles for the construction of suitable
parametrizations. In this work, we holistically explore when and how symmetries of the learning
problem can be exploited to construct quantum learning models with outcomes invariant under
the symmetry of the learning task. Building on tools from representation theory, we show how a
standard gateset can be transformed into an equivariant gateset that respects the symmetries of
the problem at hand through a process of gate symmetrization. We benchmark the proposed meth-
ods on two toy problems that feature a non-trivial symmetry and observe a substantial increase
in generalization performance. As our tools can also be applied in a straightforward way to other
variational problems with symmetric structure, we show how equivariant gatesets can be used in
variational quantum eigensolvers.
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Y Despite the great promise of quantum machine learning models, there are several challenges

one must overcome before unlocking their full potential. For instance, models based on quantum
neural networks (QNNs) can suffer from excessive local minima and barren plateaus in their training
landscapes. Recently, the nascent field of geometric quantum machine learning (GQML) has emerged
as a potential solution to some of those issues. The key insight of GQML is that one should design
architectures, such as equivariant QNNs, encoding the symmetries of the problem at hand. Here,
we focus on problems with permutation symmetry (i.e., the group of symmetry S,), and show how
c to build S,-equivariant QNNs. We provide an analytical study of their performance, proving that
they do not suffer from barren plateaus, quickly reach overparametrization, and can generalize well
from small amounts of data. To verify our results, we perform numerical simulations for a graph
state classification task. Our work provides the first theoretical guarantees for equivariant QNNs,
thus indicating the extreme power and potential of GQML.
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Most currently used quantum neural network architectures have little-to-no inductive biases, lead-
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ing to trainability and generalization issues. Inspired by a similar problem, recent breakthroughs
in classical machine learning address this crux by creating models encoding the symmetries of the
learning task. This is materialized through the usage of equivariant neural networks whose action

image classification

commutes with that of the symmetry. In this work, we import these ideas to the quantum realm
by presenting a general theoretical framework to understand, classify, design and implement equiv-
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ariant quantum neural networks. As a special implementation, we show how standard quantum
convolutional neural networks (QCNN) can be generalized to group-equivariant QCNNs where both
the convolutional and pooling layers are equivariant under the relevant symmetry group. Our frame-
work can be readily applied to virtually all areas of quantum machine learning, and provides hope
to alleviate central challenges such as barren plateaus, poor local minima, and sample complexity.




Supervised Quantum Machine Learning

= Classical data x € X associated with label ¢ € Y following underlying function f: X - Y
= Supervised learning : Find yg which is as close as possible to f

= Final prediction y, for an input feature with the observable 0

Yo (x) = (W) |UT(8)0 UB) | (x) )
“ Models agnostic to the underlying symmetry of X

QNN Cat?

'U(Q) " Dog?

Schuld, M., Petruccione, F. (2021). Quantum
Science and Technology. Springer, Cham.
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Geometric Quantum Machine Learning

= Consider a symmetry group ® on the data space X
“ ®-Invariance: ForallxeX andge®

vo(glx]) = yg(x)

— Require 1) Equivariant data embedding 2) Equivariant QNN 3) Invariant Measurement

> QN N » (Cat

U(O)

L. Schatzki, et. al. (2022). arXiv:2210.09974
Q. T. Nguyen, et. al. (2022). arXiv:2210.08566
M. Ragon, et. al. (2022). arXiv:2210.07980
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Meyer, J., et al. (2023). PRX Quantum, 4, 010328.

Symmetries induced by data embedding

= Quantum feature map Yy: X - H
— Embed classical data into quantum state

=  ®-Equivariant embedding : Induces a unitary quantum action V.| g|

Y (glx])) = Vlgllp(x))

“ Vgl = Representation of g on # induced by y
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Meyer, J., et al. (2023). PRX Quantum, 4, 010328.

Equivariant ansatz

* Focus on gates generated by a fixed generator G
R;(0) = exp(—ifG)

" ® - equivariant gate : Forallge ® and 6 e R

[Rc(0),Vs[gll =0 « [G,Vs[g]] =0
— U(O) is ® — equivariant if and only if it consists of equivariant quantum operators

Twirling method :
= Arbitrary generator A — Construct a projector onto all symmetry group element

= Twirling operator : Tg[A] = l?ilng@VS[g]TAVs[g]
— [T5[A], Vilgl] = 0 forany g € G

QUANTUM Approximately Equivariant QCNN for p4m
CERN
@ | 1QY) fHiten| @ @52 212



Meyer, J., et al. (2023). PRX Quantum, 4, 010328.

Invariant Measurement

" - Invariant Observable : Forall ge 6
V' [g10V[g] = 0

Invariance from equivariance
= The final prediction yys(x) is ® -invariant if it consists of a ® -equivariant QNN and measurement.

ve(glx]) = W(glxDIUt(©)0 U®O) [ (glx]))
= (YO |V.TUt(0)0 UO) V| ()
= (Y@ |Ut OV 0 U®d) |9 (x))
= (Y@OIUT(O)0 UG IY()) = yo(x)

— Model respects the label symmetries

QUANTUM Approximately Equivariant QCNN for p4m
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p4m symmetry

* Plane (Wallpaper) symmetry group : Symmetry group of planar square t,
= Consists of 8 components A

\\‘
\\

- Identity e

- Rotation r,72,73 of 90°,180°,270° around origin
- Reflection ¢,,t, in the x,y axis

- Reflection in the two diagonal
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Quantum Embedding for p4m symmetry

Coordinate-Aware Amplitude Embedding method
= Consider a classical image of size L X L, x = {X(0, X1, > X1 —11-1}-

= Explicitly denote the coordinates of each pixels with 2n qubits, n =log, L :

L-1L-1

WE) =22 xyli) i)

i=0 j=0 9o:n 9n:2n

by
' 7 a b t r I

|00)(|10){|20) ||30) [03)(113)||23) (|33) [30)(120)|[10)(|00) |03)(]102)|[01) ||00)

101)111){121) ||31) 102) |112)122)|]32) 131) |]121) ||11)|]01) 113) [[12) ||11) |[|10)
A >

102) 112)|122) ||32) 101) 111} ]21)|]31) 132) 122) |112)|]02) 123) 1122)|121) ||20)

103)113)|]23) ||33) '|00) 110) |20} ||30) ‘|33) 123) |113)/]03) 133) 132) |31)'|30)

' N %
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Induced representation of CAA embedding

= Induced Symmetry representation
Vx=Hn®X®nr=Xn:2nr Vy=X®n®Hn=X1:n
V= (®Ly SWAP;1,) X®"® 1) = V'V,

—> Find operators that commute with V,, V,,, V.

U € comm{Xl:n, Xn:an 7i1=1 SWAPi,i+n}

by
o 3 . ) PN

100) |10){]20) ||30) 103) |[13)[123) |I33) |30)|120)110) ||00) 103) [02)]01) |00)
101) |11){]21)|31) 102) 1[12)1]22) ||32) 131)]121)111) ||01) 113)[12)[11) |10)
; 102) [|12)[]22) ||32) g 101) [11)[]21) ||31) 132) 122)112) ||02) 123) [22)||21) |20)
103) [|13)]23) |33) |00) ||10) ||20) ||30) 133)|23) |13) [|03) 133) [132){]31) ||30)

v \
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Quantum Convolutional Neural Network

* Quantum analogue of classical convolutional neural network

= Consists of : 1) Convolutional filters 2) Pooling layers — Hierarchical architecture

= (Partial) Translational Invariance : Identical parameters for all the filters in each layer
= Allows to avoid barren plateau

—_ Data —
— Embedding —

o8

e e

Cong, I., Choi, S. & Lukin, M.D. Nat. Phys. 15, 1273-1278 (2019)
T. Hur et. al. (2022). Quantum Mach. Intell. 4, 3
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Equivariant Quantum Ansatzs

For ' : Repeat the same parameter on g; and q;,,, for even n
For V,,V,: Consider two different cases

Gates constrained to g;., OR ¢,.2n
Consider 2-body quantum gate 2> Quantum gates that commute with X ® X
X1, X5, X.X,,V1Y5, 2,75 € comm(X @ X)
— Equivariant gate set ¢, , = {X, X,, VY5, 7Z,Z,}

Gates applied to q;., AND q,,.o,,
Quantum gates that commute with X" @ I — Unbiased weight of P, applied on q;.,, and q,,.o,,
Even number of Pauli Y and Pauli Z gates applied on q;.,, and g5,
Requires at least 4 qubit gates > Search quantum gates that commute with XXII
— Equivariant gate set ¢, = {F,F,P, /P, /|P, , €E{X,Y,Z}}
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Equivariant Quantum CNN

Low angle assumption
Label misassignment error ~ 2%

4 Rx(6:1) H "

< Rx(62) H = = Bx (1) |5  Bx (04) |7 B
L= Ryyyy(63) = Ryy (6) Rz2(06)

- Bx (1) - — Rx (02) H H Rx(05) H —

{ Ry (62) H n

EquivQCNN ApprEquivQCNN
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Approximately Invariant Measurement

i, —— Rz(qﬁ) H ’.7(\ M1: (p =0

[Pl 1] ®[P°’ ] My: ¢ #0

Giyp+n —{ R2(0) F H X —

= Final quantum state : |yf) = re'%]00) + r,e'%1|01) + 1,€'92|10) + r3€'%3|11)

= For 14’ : Invariance guaranteed by p, + p}

Low angle assumption
Label misassignment error 2~6%
Py — P§ = sin(2¢)[ryry sin(6; — 8,) + ry13sin(63 — 6,)]
1
Esm(qu) [sin(6; — 6y) + sin(6; — 6,)]

mm) Approximately invariant with an error of €

“ For V, : Denote Pj for the output of reflected image
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Application

Test EqQuivQCNN on two datasets with L =16 > 8 qubits
Spin distribution in Ising model under the Hamiltonian H = —J };;, 0;0;
— Phase detection (Ordered / Disordered phase)
Extended MNIST dataset — Augmented with rotated & reflected images

; . |
K

| N
1, T

Spin distribution in Ising model Extended MNIST
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Generalization power of EQCNN

* Measure generalization power with test accuracy for non-equivariant & equivariant QCNN
— Similar number (23 - 25) of parameters for both models
— Different number of training samples N = 20, 40, 80, ..., 10240

Ising model

S OCNN < 0.65 I,! —— QCNN
—e— EquivQCNN —e— EquivQCNN
0.775 & —e— Appr-EquivQCNN (M) 0.60 —e— Appr-EquivQCNN (M)
—8— Appr-EquivQCNN (M) —8— Appr-EquivQCNN (M)
0.750 0.55 | , _ )
2 2! 22 23 24 25 26 2 28 2 210
Number of training samples (x 10) Number of training samples (x 10)
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Non-convexity of loss landscape

= Equivariance — Smoother and more convex loss landscape
= Loss landscape plotted for Ising model phase detection

/"//\i\\\

~—

=
\‘
~

~—]

~
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Li, Hao, et al. Advances in neural information
processing systems 31 (2018).

Non-convexity of loss landscape

= Hessian of f, (Hf) ai af - Curvature of the loss landscape

* Non-negative eigenvalue A 2> Convex function
= Measure the lowest eigenvalue A, for Ising model phase detection

, |=mm QCNN go WM QCNN
" | mmm EquivQCNN B EquivQCNN
2 I
5 6 5 60
T 5 40
Z =

I

; : 20
N ‘ |

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.5 -0.4 —0.3 —0.2 -0.1 0.0 0.1
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Multiclass-classification v

= 4 class-classification with semeion dataset (16 x 16 pixels handwrittien digits)

= 311 training samples, 313 validation samples

Non-equivariant QCNN QCNN M,
(24 params) 3

0 0.027 0.055

True labels

-0.2

0.065 0.065

o0

- 0.0

Predicted labeN
Predicted labels

(76.5 *+ 1.8)% (82.2 + 0.2)%
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Conclusion

Approximately equivariant QCNN for p4m symmetry

Construct Equivariant QCNN for planar symmetry on images with a restricted noise
Better generalization power for EQUivQCNN
Smoother loss landscape proved with eigenvalues of the Hessian

Future works :
Quantify the EqQuivQCNN with other metrics (overparameterization, gradient magnitude)

Construct equivariant neural network for RGB images

Investigate the impact of noises on GQML.
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