Approximately Equivariant QNN for p4m Group Symmetry in Images

Quantum Techniques in Machine Learning 2023

Su Yeon Chang [EPFL, CERN] Bertrand Le Saux [ESA], Sofia Vallecorsa [CERN], Michele Grossi [CERN]

21 November 2023

Exploiting symmetry in variational quantum machine learning

Johannes Jakob Meyer,¹ Marian Mularski,^{1,2} Elies Gil-Fuster,^{1,3} Antonio Anna Mele,¹ Francesco Arzani,¹ Alissa Wilms,^{1,2} and Jens Eisert^{1,4,3} ¹Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ²Porsche Digital GmbH, 71636 Ludwigsburg, Germany ³Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany

⁴Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany (Dated: May 12, 2022)

Variational quantum machine learning is an extensively studied application of near-term quantum computers. The success of variational quantum learning models crucially depends on finding a suitable parametrization of the model that encodes an inductive bias relevant to the learning task. However, precious little is known about guiding principles for the construction of suitable parametrizations. In this work, we holistically explore when and how symmetries of the learning problem can be exploited to construct quantum learning models with outcomes invariant under the symmetry of the learning task. Building on tools from representation theory, we show how a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem at hand through a process of gate symmetrization. We benchmark the proposed methods on two toy problems that feature a non-trivial symmetry and observe a substantial increase in generalization performance. As our tools can also be applied in a straightforward way to other variational problems with symmetric structure, we show how equivariant gatesets can be used in variational quantum eigensolvers.

- GQML : Geometric Qua
- \rightarrow Leverage the ideas of G[
- E.g. Classifying connect

Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks

Louis Schatzki,^{1,2,*} Martín Larocca,^{3,4,†} Quynh T. Nguyen,^{3,5} Frédéric Sauvage,³ and M. Cerezo^{1,‡}

¹Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ²Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
 ³Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ⁴Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ⁵Harvard Quantum Initiative, Harvard University, Cambridge, Massachusetts 02138, USA

Despite the great promise of quantum machine learning models, there are several challenges one must overcome before unlocking their full potential. For instance, models based on quantum neural networks (QNNs) can suffer from excessive local minima and barren plateaus in their training landscapes. Recently, the nascent field of geometric quantum machine learning (GQML) has emerged as a potential solution to some of those issues. The key insight of GQML is that one should design architectures, such as equivariant QNNs, encoding the symmetries of the problem at hand. Here, we focus on problems with permutation symmetry (i.e., the group of symmetry S_n), and show how to build S_n -equivariant QNNs. We provide an analytical study of their performance, proving that they do not suffer from barren plateaus, quickly reach overparametrization, and can generalize well from small amounts of data. To verify our results, we perform numerical simulations for a graph state classification task. Our work provides the first theoretical guarantees for equivariant QNNs, thus indicating the extreme power and potential of GQML.

earning task / improve generalization

Theory for Equivariant Quantum Neural Networks

1

C

n)

Quynh T. Nguyen,^{1,2,*} Louis Schatzki,^{3,4,*} Paolo Braccia,^{1,5} Michael Ragone,^{1,6} Patrick J. Coles,¹ Frédéric Sauvage,¹ Martín Larocca,^{1,7} and M. Cerezo³

¹ Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ² Harvard Quantum Initiative, Harvard University, Cambridge, Massachusetts 02138, USA ³ Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ⁴ Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ⁵ Dipartimento di Fisica e Astronomia, Università di Firenze, Sesto Fiorentino (FI), 50019, Italy ⁶ Department of Mathematics, University of California Davis, Davis, California 95616, USA ⁷ Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. USA

Most currently used quantum neural network architectures have little-to-no inductive biases, leading to trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in classical machine learning address this crux by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work, we import these ideas to the quantum realm by presenting a general theoretical framework to understand, classify, design and implement equivariant quantum neural networks. As a special implementation, we show how standard quantum convolutional neural networks (QCNN) can be generalized to group-equivariant QCNNs where both the convolutional and pooling layers are equivariant under the relevant symmetry group. Our framework can be readily applied to virtually all areas of quantum machine learning, and provides hope to alleviate central challenges such as barren plateaus, poor local minima, and sample complexity.

inductive bias

inder the permutation

image classification

Supervised Quantum Machine Learning

- Classical data $x \in \mathcal{X}$ associated with label $\ell \in \mathcal{Y}$ following underlying function $f : \mathcal{X} \to \mathcal{Y}$
- **Supervised learning**: Find y_{θ} which is as close as possible to f
- Final prediction y_{θ} for an input feature with the observable 0

 $y_{\theta}(x) = \langle \psi(x) | \mathcal{U}^{\dagger}(\theta) \mathcal{O} \, \mathcal{U}(\theta) \, | \psi(x) \, \rangle$

• Models agnostic to the underlying symmetry of \mathcal{X}

Geometric Quantum Machine Learning

- Consider a symmetry group \mathfrak{G} on the data space \mathfrak{X}
- **6 Invariance** : For all $x \in \mathcal{X}$ and $g \in \mathfrak{G}$

$$y_{\theta}(g[x]) = y_{\theta}(x)$$

→ Require **1**) Equivariant data embedding **2**) Equivariant QNN **3**) Invariant Measurement

Symmetries induced by data embedding

- Quantum feature map $\psi: \mathcal{X} \to \mathcal{H}$
- \rightarrow Embed classical data into quantum state
- \mathfrak{G} -Equivariant embedding : Induces a unitary quantum action $V_s[g]$

 $|\psi(g[x])\rangle = V_s[g]|\psi(x)\rangle$

• $V_s[g] =$ **<u>Representation</u>** of g on \mathcal{H} induced by ψ

Equivariant ansatz

- Focus on gates generated by a fixed generator G $R_G(\theta) = \exp(-i\theta G)$
- **6** equivariant gate : For all $g \in \mathfrak{G}$ and $\theta \in \mathbb{R}$

$$[R_G(\theta), V_S[g]] = 0 \iff [G, V_S[g]] = 0$$

 $\rightarrow \mathcal{U}(\theta)$ is \mathfrak{G} – equivariant if and only if it consists of equivariant quantum operators

Twirling method :

- Arbitrary generator $A \rightarrow$ Construct a projector onto all symmetry group element
- Twirling operator : $\mathcal{T}_{\mathfrak{G}}[A] = \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} V_s[g]^{\dagger} A V_s[g]$
- $\rightarrow [\mathcal{T}_{\mathfrak{G}}[A], V_{s}[g]] = 0 \text{ for any } g \in G$

Invariant Measurement

• **\mathfrak{G} – Invariant Observable** : For all $g \in \mathfrak{G}$

$$V_s^{\dagger}[g]OV_s[g] = O$$

Invariance from equivariance

• The final prediction $y_{\theta}(x)$ is \mathfrak{G} -invariant if it consists of a \mathfrak{G} -equivariant QNN and measurement.

$$\mathbf{y}_{\theta}(\boldsymbol{g}[\boldsymbol{x}]) = \langle \psi(\boldsymbol{g}[\boldsymbol{x}]) | \mathcal{U}^{\dagger}(\theta) O \ \mathcal{U}(\theta) | \psi(\boldsymbol{g}[\boldsymbol{x}]) \rangle$$
$$= \langle \psi(\boldsymbol{x}) | V_{s}^{\dagger} \mathcal{U}^{\dagger}(\theta) O \ \mathcal{U}(\theta) V_{s} | \psi(\boldsymbol{x}) \rangle$$

- $= \left\langle \psi(x) \right| \mathcal{U}^{\dagger}(\theta) V_{s}^{\dagger} O V_{s} \mathcal{U}(\theta) \left| \psi(x) \right\rangle$
- $= \langle \psi(x) | \mathcal{U}^{\dagger}(\theta) O \ \mathcal{U}(\theta) | \psi(x) \rangle = \boldsymbol{y_{\theta}(x)}$
- \rightarrow Model respects the label symmetries

p4m symmetry

- Plane (Wallpaper) symmetry group : Symmetry group of planar square
- Consists of 8 components
- Identity e
- **Rotation** r, r^2, r^3 of 90°, 180°, 270° around origin
- **<u>Reflection</u>** t_x , t_y in the x, y axis
- Reflection in the two diagonal

Quantum Embedding for p4m symmetry

Coordinate-Aware Amplitude Embedding method

- Consider a classical image of size $L \times L$, $\mathbf{x} = \{\mathbf{x}_{00}, \mathbf{x}_{01}, \dots, \mathbf{x}_{L-1L-1}\}$.
- Explicitly denote the coordinates of each pixels with 2n qubits, $n = \log_2 L$:

$$|\psi(x)\rangle = \frac{1}{\mathcal{N}} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} x_{ij} |i\rangle |j\rangle$$

$$q_{0:n} q_{n:2n}$$

Induced representation of CAA embedding

Induced Symmetry representation

$$V_{x} = \mathbb{I}_{n} \otimes X^{\otimes n}, = X_{n:2n}, \quad V_{y} = X^{\otimes n} \otimes \mathbb{I}_{n} = X_{1:n}$$
$$V_{r} = \left(\bigotimes_{i=1}^{n} SWAP_{i,i+n} \right) (X^{\otimes n} \otimes \mathbb{I}_{n}) = V_{r}'V_{y}$$

 \rightarrow Find operators that commute with V_x , V_y , V_r

 $U \in \operatorname{comm}\{X_{1:n}, X_{n:2n}, \bigotimes_{i=1}^{n} SWAP_{i,i+n}\}$

Quantum Convolutional Neural Network

- Quantum analogue of classical convolutional neural network
- Consists of : 1) Convolutional filters 2) Pooling layers \rightarrow Hierarchical architecture
- (Partial) Translational Invariance : Identical parameters for all the filters in each layer
- Allows to avoid barren plateau

Cong, I., Choi, S. & Lukin, M.D. *Nat. Phys.* **15**, 1273–1278 (2019) T. Hur et. al. (2022). *Quantum Mach. Intell.* **4**, 3

Equivariant Quantum Ansatzs

- For V_r' : Repeat the same parameter on q_i and q_{i+n} for even n
- For V_x , V_y : Consider <u>two different cases</u>
- 1) Gates constrained to $q_{1:n} \mathbf{OR} q_{n:2n}$
- Consider 2-body quantum gate \rightarrow Quantum gates that commute with $X \otimes X$

 $X_1, X_2, X_1X_2, Y_1Y_2, Z_1Z_2 \in \operatorname{comm}(X \otimes X)$

- \rightarrow Equivariant gate set $G_{s,1} = \{X_1, X_2, Y_1Y_2, Z_1Z_2\}$
- 2) Gates applied to $q_{1:n}$ **AND** $q_{n:2n}$
- Quantum gates that commute with $X^n \otimes \mathbb{I}^n \to \text{Unbiased}$ weight of P_{σ} applied on $q_{1:n}$ and $q_{n:2n}$
- Even number of Pauli Y and Pauli Z gates applied on $q_{1:n}$ and $q_{n:2n}$
- Requires at least 4 qubit gates \rightarrow Search quantum gates that <u>commute with XXII</u>
- \rightarrow Equivariant gate set $G_{s,2} = \{P_{\sigma}P_{\sigma'}P_{\sigma'}P_{\sigma'}|P_{\sigma,\sigma'} \in \{X,Y,Z\}\}$

Equivariant Quantum CNN

Low angle assumption Label misassignment error ~ 2%

EquivQCNN

Approximately Equivariant QCNN for p4m symmetry in Images

ApprEquivQCNN

3

EPFL

Approximately Invariant Measurement

Final quantum state : $|\psi_f\rangle = r_0 e^{i\theta_0}|00\rangle + r_1 e^{i\theta_1}|01\rangle + r_2 e^{i\theta_2}|10\rangle + r_3 e^{i\theta_3}|11\rangle$

21/11/2023

• For V_r' : Invariance guaranteed by $p_0 + p'_0$

QUANTUM TECHNOLOGY

• For V_x : Denote P_0^x for the output of reflected image

Low angle assumption

Label misassignment error 2~6%

$$P_0 - P_0^x = \sin(2\phi)[r_0r_1\sin(\theta_1 - \theta_0) + r_2r_3\sin(\theta_3 - \theta_2)]$$
$$\leq \frac{1}{2}\sin(2\phi)[\sin(\theta_1 - \theta_0) + \sin(\theta_3 - \theta_2)]$$

• Approximately invariant with an error of ϵ

· e esa

Application

- Test EquivQCNN on two datasets with $L = 16 \rightarrow 8$ qubits
- 1) Spin distribution in Ising model under the Hamiltonian $\mathcal{H} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j$
- \rightarrow Phase detection (Ordered / Disordered phase)
- 2) Extended MNIST dataset \rightarrow Augmented with rotated & reflected images

Extended MNIST

Spin distribution in Ising model

Generalization power of EQCNN

- Measure generalization power with test accuracy for non-equivariant & equivariant QCNN
- \rightarrow Similar number (23 25) of parameters for both models

INITIATIVE

 \rightarrow Different number of training samples N = 20, 40, 80, ..., 10240

Non-convexity of loss landscape

- Equivariance \rightarrow Smoother and more convex loss landscape
- Loss landscape plotted for Ising model phase detection

ApprEquivQCNN

DEI

Non-equivariant QCNN

· e esa 21/11/2023

QUANTUM TECHNOLOGY INITIATIVE

Non-convexity of loss landscape

Hessian of f, $(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j} \rightarrow \text{Curvature of the loss landscape}$

- Non-negative eigenvalue $\lambda \rightarrow$ Convex function
- Measure the lowest eigenvalue λ_0 for Ising model phase detection

Li, Hao, et al. *Advances in neural information* processing systems 31 (2018).

Multiclass-classification

EPEI

- 4 class-classification with semeion dataset (16 x 16 pixels handwrittien digits)
- 311 training samples, 313 validation samples

Conclusion

Approximately equivariant QCNN for p4m symmetry

- Construct Equivariant QCNN for planar symmetry on images with a restricted noise
- Better generalization power for EquivQCNN
- Smoother loss landscape proved with eigenvalues of the Hessian

Future works :

- 1. Quantify the EquivQCNN with other metrics (overparameterization, gradient magnitude)
- 2. Construct equivariant neural network for RGB images
- 3. Investigate the impact of noises on GQML.

su.yeon.chang@cern.ch

Codes!