

QTML 2023

Splitting and Parallelizing of QCNNs for Learning Translationally Symmetric Data

arXiv:2306.07331

Koki Chinzei

Fujitsu Research, Japan

Quoc Hoan Tran

Kazunori

Maruyama

Hirotaka Oshima

Shintaro Sato

Background

- Quantum Convolutional Neural Networks (QCNN) Cong et al, Nat. Phys. (2019)
- Classify quantum data based on parametrized quantum circuit

Background

• Quantum Convolutional Neural Networks (QCNN) Cong et al, Nat. Phys. (2019)

High feasibility and trainability ✓ Logarithmic circuit depth
✓ Absence of barren plateau

A promising QML model

Pesah et al, PRX (2021)

Huge measurement cost in QCNN

Huge measurement costs hinder solving large-scale problems in practice

Measurement cost \sim O(#parameters \times #training data \times #maximum epoch \times #shots/obs.)

Huge measurement cost in QCNN

This talk

Huge measurement costs hinder solving large-scale problems in practice

Measurement cost \sim O(#parameters \times #training data \times #maximum epoch \times #shots/obs.)

Propose a new QCNN model with high measurement efficiency
It reduces the required number of shots by a factor of O(1/n)

Basic idea for efficient QCNN

Leverage the prior symmetry knowledge of data for an efficient model

Basic idea for efficient QCNN

Leverage the prior symmetry knowledge of data for an efficient model

This study focuses on translational symmetry

$$T \rho_{\rm in} T^{\dagger} = \rho_{\rm in}$$

translation op.

Basic idea for efficient QCNN

Leverage the prior symmetry knowledge of data for an efficient model

© 2023 Fujitsu Limited

Relation with geometric QML (GQML)

Relation with geometric QML (GQML)

Relation with geometric QML (GQML)

Two building blocks

split-parallelizing QCNN (sp-QCNN)

Two building blocks

split-parallelizing QCNN (sp-QCNN)

Two building blocks

split-parallelizing QCNN (sp-QCNN)

Mechanism for efficient measurement

(*T*: translation operator, *U*: unitary operator for the entire circuit)

T-symmetric data X

- T-symmetric
- circuit splitting
 - \cdot unitary operations

The two subcircuits are equivalent

Mechanism for efficient measurement

The n subcircuits are all equivalent to conventional QCNN (Expectation values on all qubits are equal)

Mechanism for efficient measurement

The n subcircuits are all equivalent to conventional QCNN (Expectation values on all qubits are equal)

The sp-QCNN can effectively parallelize *n* QCNNs.

Measurement efficiency is improved by a factor of O(n)

Performance verification

• Quantum phase recognition Cong et al, Nat. Phys. (2019)

$$H = -\sum_{j=1}^{L} Z_j X_{j+1} Z_{j+2} - h_1 \sum_{j=1}^{L} X_j - h_2 \sum_{j=1}^{L} X_j X_{j+1}$$

Ground state belongs to topological phase?

The sp-QCNN accelerates the learning process

Classical simulation (Qulacs)

- > Used a small number of measurement shots to estimate the gradient
 - \rightarrow Statistical errors can disturb the learning process

The sp-QCNN accelerates the learning process

Classical simulation (Qulacs)

- Used a small number of measurement shots to estimate the gradient
 - \rightarrow Statistical errors can disturb the learning process

- High measurement efficiency suppresses statistical errors to stabilize and accelerate the learning process.
- Improvement becomes more obvious as the number of qubits increases

The sp-QCNN accelerates the learning process

Classical simulation (Qulacs)

- Used a small number of measurement shots to estimate the gradient
 - \rightarrow Statistical errors can disturb the learning process

Phase diagram predicted by sp-QCNN

Can predict the entire phase diagram
= Good generalization

Quantifying measurement efficiency

Measurement efficiency

 $= \left(\frac{\text{Estimation error in conventional QCNN}}{\text{Estimation error in sp-QCNN}}\right)^2$

Quantifying measurement efficiency

© 2023 Fuiitsu Limited

Summary

Proposed an efficient model, sp-QCNN, based on prior symmetry knowledge

It improves measurement efficiency by a factor of O(n) for translationally symmetric data

