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data

◆ Quantum Convolutional Neural Networks（QCNN）

?

fully-connected layer

High feasibility and trainability

A promising QML model

✓ Logarithmic circuit depth
✓ Absence of barren plateau

Pesah et al, PRX (2021)

No Barren plateaus!×



Huge measurement cost in QCNN
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Measurement cost ～ O(#parameters × #training data × #maximum epoch × #shots/obs.)

Huge measurement costs hinder solving large-scale problems in practice

Generalization

Data size
Estimated expectation value

Caro et al, 
Nat. Comm. (2022)



Huge measurement cost in QCNN
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Measurement cost ～ O(#parameters × #training data × #maximum epoch × #shots/obs.)

➢ Propose a new QCNN model with high measurement efficiency
➢ It reduces the required number of shots by a factor of 𝑶 𝟏/𝒏

This talk

Estimated expectation value

our model

Huge measurement costs hinder solving large-scale problems in practice



Basic idea for efficient QCNN
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Leverage the prior symmetry knowledge of data for an efficient model
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This study focuses on
translational symmetry translation op.
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Basic idea for efficient QCNN
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Leverage the prior symmetry knowledge of data for an efficient model

split-parallelizing QCNN (sp-QCNN)

This study focuses on
translational symmetry

conventional QCNN

translation op.

Effective parallelization of conventional QCNN

Solids



Relation with geometric QML (GQML)
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𝑈(𝜃)



Relation with geometric QML (GQML)

© 2023 Fujitsu Limited10

… …

this is a cat too.If this is a cat,

Data is not symmetric
（Function is symmetric） Data is symmetric

translation op.
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Relation with geometric QML (GQML)
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… …

this is a cat too.If this is a cat,

Data is not symmetric
（Function is symmetric） Data is symmetric

translation op.

model

data

GQML

Equivariance 𝑈 𝜃 , 𝑆 = 0

This workLarocca2022, etc

Equivariance 𝑈 𝜃 , 𝑇 = 0

𝑈(𝜃)

=

(New idea!) 
The combination of equivariance 
and data symmetry results in 
high measurement efficiency!
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Two building blocks
1. T-symmetric circuit splitting

2. T-symmetric convolution layers

split-parallelizing QCNN (sp-QCNN)
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Two building blocks
1. T-symmetric circuit splitting

2. T-symmetric convolution layers

output = σ𝑗⟨𝑍𝑗⟩ /𝑛

split-parallelizing QCNN (sp-QCNN)
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Mechanism for efficient measurement
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subcircuit
subcircuit

translation

=

translation

The two subcircuits are equivalent
T-symmetric
・circuit splitting
・unitary operations

T-symmetric data ×

（𝑇: translation operator, 𝑈: unitary operator for the entire circuit）

16



Mechanism for efficient measurement
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=

conventional QCNN

The n subcircuits are all equivalent to conventional QCNN
（Expectation values on all qubits are equal）
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Mechanism for efficient measurement

© 2023 Fujitsu Limited

=

conventional QCNN

The n subcircuits are all equivalent to conventional QCNN
（Expectation values on all qubits are equal）

Measurement efficiency is 
improved by a factor of 𝑶(𝒏)

The sp-QCNN can effectively 
parallelize 𝒏 QCNNs.

18



Performance verification
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◆Quantum phase recognition Cong et al, Nat. Phys. (2019)

Ground state belongs to topological phase?

Symmetry Protected 
Topological (SPT) phase

Paramagnetic

Antiferromagnetic

Training data

Training data
（some ground states）

T symmetric learning predict

sp-QCNN



The sp-QCNN accelerates the learning process
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◆Classical simulation (Qulacs）
➢ Used a small number of measurement shots to estimate the gradient 

→ Statistical errors can disturb the learning process

20
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conventional QCNN

sp-QCNN

n=8
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n=16

➢ High measurement efficiency suppresses statistical errors 
to stabilize and accelerate the learning process.

➢ Improvement becomes more obvious as the number of qubits increases



The sp-QCNN accelerates the learning process
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➢ Can predict the entire phase diagram
= Good generalization

◆Classical simulation (Qulacs）
➢ Used a small number of measurement shots to estimate the gradient 

→ Statistical errors can disturb the learning process

Phase diagram predicted by sp-QCNN

PM

SPT

AFM

Training 
data

22



Quantifying measurement efficiency
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Measurement efficiency

=
Estimation error in conventional QCNN

Estimation error in sp−QCNN

2
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Quantifying measurement efficiency
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Measurement efficiency increases linearly as n
→ 𝑶(𝒏) times improvement

Measurement efficiency

=
Estimation error in conventional QCNN

Estimation error in sp−QCNN

2

(a) Early stage of learning (b) Final stage of learning
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Summary
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Proposed an efficient model, sp-QCNN, based on prior symmetry knowledge 

➢ It improves measurement efficiency by a factor of O(n) 
for translationally symmetric data

conventional QCNN

sp-QCNN
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e
s
t 
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Epoch
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