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Time-Series SimulationImage Generation Anomaly Detection

Schlegl et al., IMPI 2017Qin et al., arXiv:1704.02971thispersondoesnotexist.com De Cao and Kipf, arXiv:1805.11973

Molecular Discovery

Natural Language Processing

ChatGPT, OpenAI
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Probability for each sample:
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Exact MMD Loss Variance
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Exact MMD Loss Variance MMD Training
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Locality ≡ Probability Marginals

If loss function is at most k-local,

it cannot learn beyond k-order marginals.
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Data target stateQuantum fidelity loss
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Local measurement

… CAN BE BOTH TRAINABLE AND FAITHFUL… CAN BE BOTH TRAINABLE AND FAITHFUL

Data target stateQuantum fidelity loss
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Dataset:  Simulated CERN particle jets
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M. S. Rudolph*, S.Lerch*, S.Thanasilp*, 

O. Kiss, S. Vallecorsa, M. Grossi, & Z. Holmes. 

“Trainability barriers and opportunities in quantum 

generative modeling”. arXiv:2305.02881.
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