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▪ Introduction: what are QBMs? 

▪ Main result: polynomial sample complexity 

▪ Numerical verification 

▪ Discussion and open problems
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Introduction: what are quantum Boltzmann Machines

▪ A quantum Boltzmann machine (QBM) is a quantum machine learning model that can be 
used for generatively modelling classical and quantum data.           
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Introduction: what are quantum Boltzmann Machines

▪ A quantum Boltzmann machine (QBM) is a quantum machine learning model that can be 
used for generatively modelling classical and quantum data.            

▪ qubit parameterised Gibbs state , 

▪with ansatz/model Hamiltonian . 

▪ Any set of (bounded) Hermitian operators , e.g. Pauli operators.

n− ρθ =
eℋθ

Treℋθ

ℋθ =
m

∑
i=1

θiHi

{Hi}m
i=1
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Note: focus here on fully visible QBMs
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Introduction: goal and applications

▪Goal: optimise  such that samples taken from the QBM  mimic samples from a 
given target dataset .            

▪

θ s′ ∼ ρθ
{sμ}M

μ=1
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Introduction: goal and applications

▪Goal: optimise  such that samples taken from the QBM  mimic samples from a 
given target dataset .            

▪ Applications: 

▪Generative modelling of (binarised) classical data 
[Amin et al., 1601.02036], [Kappen, 1803.11278] 
▪ Learning physical models from experimental data 
▪ Learning the entanglement Hamiltonian 

[M.K. Joshi et al. arXiv 2306.00057 (2023), C. Kokail et al., PRL 127 (2021)] 
▪ Verification of quantum devices 

[J. Wang et al., Nature Physics 13 (2017)] 
▪…

θ s′ ∼ ρθ
{sμ}M

μ=1
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[J. Wang et al., Nature Physics 13 (2017)]
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[J. Wang et al., Nature Physics 13 (2017)]

CAN QBMS BE TRAINED EFFICIENTLY?

Sample complexity? Time per sample?
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Results: (Re)formulation of the learning problem

▪Relative entropy loss function:  ,            

▪Derivatives: . 

          

S(η∥ρθ) = Tr(η log η) − Tr(η log ρθ) ρθ =
eℋθ

Treℋθ

∂S(η∥ρθ)
∂θk

= Tr[ρθHk] − Tr[ηHk]
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Results: (Re)formulation of the learning problem

▪Relative entropy loss function:  ,            
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▪ Show that  is (strictly) convex. 
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Results: (Re)formulation of the learning problem

▪Relative entropy loss function:  ,            

▪Derivatives: . 

▪ Show that  is (strictly) convex. 

▪ => QBM trained for a  such that:  
 
                    
          

S(η∥ρθ) = Tr(η log η) − Tr(η log ρθ) ρθ =
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Learning problem
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Results: Polynomial sample complexity

▪Optimize  with stochastic gradient descent. S(η∥ρθ)
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Results: Polynomial sample complexity

▪Optimize  with stochastic gradient descent.         S(η∥ρθ)
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Theorem 1: after  iterations, where , we have 

solved the QBM learning problem to accuracy .  

Each iteration requires  preparation of the Gibbs state .

T =
48δ0m2(κ2 + ξ2)

ϵ4
δ0 = S(η∥ρθ0) − S(η∥ρθopt)

ϵ

N ≤ 𝒪 ( 1
κ4

log
m

1 − λ 1
T ) ρθ
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Results: Polynomial sample complexity

▪Optimize  with stochastic gradient descent.         S(η∥ρθ)
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Theorem 1: after  iterations, where , we have 

solved the QBM learning problem to accuracy .  

Each iteration requires  preparation of the Gibbs state .

T =
48δ0m2(κ2 + ξ2)

ϵ4
δ0 = S(η∥ρθ0) − S(η∥ρθopt)

ϵ

N ≤ 𝒪 ( 1
κ4

log
m

1 − λ 1
T ) ρθ

▪  => Polynomial sample complexity!m = Poly(n)
No barren plateaus…
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Results: reducing the sample complexity by pretraining

▪ Sample complexity depends on . 
          

δ0 = S(η∥ρθ0) − S(η∥ρθopt)
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Results: reducing the sample complexity by pretraining

▪ Sample complexity depends on . 
          

δ0 = S(η∥ρθ0) − S(η∥ρθopt)
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Theorem 2: can reduce  by pretraining a sub-model  
                    defined by a subset of the operators . 

δ0
{Hi}m̃

i=1
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Results: reducing the sample complexity by pretraining

▪ Sample complexity depends on . 
          

δ0 = S(η∥ρθ0) − S(η∥ρθopt)
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Theorem 2: can reduce  by pretraining a sub-model  
                    defined by a subset of the operators . 

δ0
{Hi}m̃

i=1

▪Note  defined with respect to the larger model 
▪ Examples: quantum mean-field (MF), Gaussian-Fermionic (GF), geometrically local (GL)

δ0



Numerical verification: pretraining

On cla
ssic

al device
δ 0

+
S o

pt
δ 0

+
S o

pt

On quantum computer 

1D Heisenberg model Binary time series data



Numerical verification: verifying sampling bound
δ 0

+
S o

pt

Bound: T = 𝒪(109)



Summary and discussion

▪We have reformulated the QBM learning problem and proved that it can be solved with 
polynomial sample complexity. 

▪ Pretraining on a subset of the parameters can only improve the sample complexity. 
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Summary and discussion

▪We have reformulated the QBM learning problem and proved that it can be solved with 
polynomial sample complexity. 

▪ Pretraining on a subset of the parameters can only improve the sample complexity.  

▪ Time complexity: combine with Gibbs sampler of your choice (classical or quantum). 

▪ Speedups in quantum Gibbs sampling translate to QBM learning. 
 
         1) Generic case: quadratic speedup but possibly exponential time 
         2) Efficient Gibbs samplers for specific cases?? 
             [O. Watts et al., 2310.07774],  [Chen et al., 2311.09207] 
         3) Resources for experimental demonstration??
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