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Gaussian processes

Definition (Gaussian process)

A collection of random variables {X;, Xz, ...} is a GP if and only if, for
every finite set of indices {1,2,..., m}, the vector (X1, Xo, ..., Xm)
follows a multivariate Gaussian distribution, N (i, X).

P(C(p1),C(p2)) = N(0, %)
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GPs in classical ML

Theorem (Central limit theorem)

Let {X1,Xa,...,Xs} be iid. random variables. The sum
X1+ Xo + - -+ + Xs converges to a Gaussian distribution when S — oc.

NN
The input of the network is x € R,

and the output is given by i

l‘lw

Np, J
F(x)=b+ > vih(x)
=1 xo A Y

where h;(x) = ¢(a; + u;x) models Y2
the action of each neuron in the
hidden layer.
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GPs in QML

@ Quantum neural network (i.e. variational circuit) U
@ Set of initial pure states {p;};
o Traceless observable from a set {O;}; such that 07 =1V

o Cost function of the form C;(p;) = Tr[Up;UTO}]

QNN M
C(Pl)
P1 A .
o € = (Ci(pi),...,Cipir),... —®,  GP
o ~ (G(pi) i(pir)s )
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We cannot leverage the central limit theorem (or its variants) because of
the unitarity constraint.

d

C'(p,') == ukk/pk/ruf,rorrk
J
k,k’ r,r'=1

The entries of Haar random unitaries over the unitary group U(d) are i.d.,

but correlated as =% (same row) or ﬁ (different row).
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GPs in QML

Strategy

i) Computing all the moments over the Haar measure of certain groups
(unitary and orthogonal).

ii) Showing they match those of a multivariate Gaussian.
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GPs in QML

First moments

Ey(a)[G(pi)] = Eo(a)[Ci(pi)] =0

Second moments

U d 1
— o] — =
Zi,i/ =5 1 (Tr[p,p, ] )
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GPs in QML

‘Dataset. For all p;, p;y € @:‘GP‘Correlation| Statement ‘

Tr[pipi] € Q (W) Yes| Positive |Theorem 1

Tr[pips] = 5 Yes Null Theorem 2

Tr[pipir] =0 Yes| Negative |[Theorem 3
NN

P(y1,y2) = N(0,%)
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)
U is Haar random over U(d) and O(d), resp.

Haar random unitary QNN

2009 g 10° 1 12 qubits
| 3|5 10%4 14 qubits
150 25 1075 [ 16 qubits
1001 4 | 6 8 10 1 18 qubits
K —— Gaussian Process
50 1
0 T T T T T T T
-0.15 -0.10 —0.05 0.00 0.05 0.10 0.15
Haar random orthogonal QNN
150
[ 12 qubits
14 qubits
100 + [ 16 qubits
4 6 8 10 [ 18 qubits
50 - k —— Gaussian Process
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

C(U)
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GPs in QML

Assuming that there exists a parametrized gate in U of the form e~ for
some Pauli operator H, then

PG| = o). P(nGi(p)| 2 ) € O ()

Concentration of measure is doubly-exponential
in the number of qudits!
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GPs in QML

Let U be drawn from a t-design. Then, under the same conditions for
which Theorems 1, 2 and 3 hold, the vector € matches the first t
moments of a GP.

An extension of Chebyshev's inequality to higher order moments leads to

e p et o < e3)!
PG| = <). P(10Gi(p1)| = ) € O (m (L;J>!(dc2ﬂﬁ>

New and tighter bounds for t-designs.
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GPs in QML

Given the set of observations y(p1),-..,y(pm) obtained from
N € O(poly(log d)) measurements, then the predictive distribution of the
GP is trivial:

P(Ci(pm+1)IGi(p1), - - -, Gilpm)) = N(0,0°)

We cannot use the GPs to efficiently predict new outputs of
the QNN using Bayesian statistics.
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Proof technique
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Proof technique

We need to compute quantities of the form (for arbitrary k)

Eg [Tr [U@kA (UT)®ko®kH _ [EG [U®kA(UT)®k} o®k} :
where A = pj; ® --- ® p;, and G = U(d), O(d).

TN = [ du(U)UERA (UT)E* is called the twirl over G.

Recall that
e the moments of € = (Cj(pi), ..., Ci(pir),...) are of the form
Ey(a) [H§=1 CJ'(pf,\)} = Ey(q) [H§=1 Tr[Up;, UT Oj]}

o Tr[A® B] = Tr[A] Tr[B]
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Proof technique

The twirl belongs to the k-th order commutant.

The k-th order commutant of the tensor representation of U(d) is the set
of permutations, i.e. the symmetric group Sx (Schur-Weyl duality)

=
U
BSBIE e o

Ilel SWAP®I
> T

T ? T >
ME)G)  a2)@3)  M@23)  (13)(2) (123) (132)
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Proof technique

We can expand the twirl as

D
TG(k)[/\] = Z cu(N)P,, with P, abasis of C(G)
pn=1

The coefficients ¢, (A) can be calculated using Weingarten calculus, i.e.

gN) = At b(A),

—

where b(A) = (Tr[AP1], ..., Tr[APp]) and (A),, = Tr[P,P,] is the Gram
matrix.
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Proof technique

To compute higher moments, we need asymptotic Weingarten calculus
(the A matrix has size k! x k!).

A=d“(A+1B)

1 0 0
0 1 0 0
0 0 1

)
I
~
X
~
= O
O =
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Proof technique

Let the representation of the symmetric group Sy be

d—1
Pa(0) = D lig-rqays--sig-1(a)) (it - - ik

i1yeeyig=0

We can prove that

B [UA (U] = 3 TAPy(0)]Py(o ™)
o€Sk

+ % Z Cox Tr[APy(0)]|Py(7) ,

o,meSy

with .- € O(3).
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Proof technique

The previous implies

Eua | Tr [USA (U2 0%]] = % S Te{APy(0)] Te[Pa(o 1) 0%
€Sk

1
+ D onTr[APg(0)] Tr[Py(m) O]
o,mESK

o Tr[Py4(c)O®k] = 0 if o contains a cycle of odd length.

o Tr[Py4(c)O®k] = d’ if k is even and o is a product of r disjoint cycles
of even length.

o In particular, Tr[Py(c)O®¥] = d*/2 if k is even and ¢ is the product
of k/2 disjoint transpositions.
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Proof technique

We find that the moments of € are

Eyq) [Tr [U@k/\(UT)@JkO@kH :ﬁ STOII el (1)

oceTy {t,t'}eo

According to Wick's theorem, the moments of a multivariate Gaussian are

EIG()s-- - Glor) - 1= S ] CovGpoe) Glpe)]

oc€Ty t,t'€o

( Recall that asymptotically X, = M )
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Conclusions
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Conclusions

@ Under certain conditions, the output distribution of deep Haar random
QNNs converges to a Gaussian process in the limit of large Hilbert
space dimension.

@ The situation is more nuanced that in classical NNs. We need to make
assumptions on the states processed by the QNN, as well as on the
measurement operator.

@ Our results may be useful in more general settings where Haar ran-
dom unitaries / t-designs are considered, such as quantum information
scramblers and black holes, or many-body physics.
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