A General Approach to Dropout in Quantum Neural Networks

Francesco Scala, Andrea Ceschini, Massimo Panella, Dario Gerace

UNIVERSITÀ DI PAVIA **Department of Physics**

21/11/2023

Quantum Techniques in Machine Learning 2023

Quantum Machine Learning¹

[1] J. Biamonte, et al., Nature 549, 195 (2017) [2] S. Mangini et al., EPL 134 10002 (2021)

Overparametrized QNNs

 \mathcal{F}_{x} is the Quantum Fisher Information Matrix \rightarrow Hessian of fidelity w.r.t. parameters

$$\begin{aligned} [\mathcal{F}_{x}(\boldsymbol{\theta})]_{ij} &= 4 \operatorname{Re}[\langle \partial_{i}\psi(x,\boldsymbol{\theta}) | \partial_{j}\psi(x,\boldsymbol{\theta}) \rangle \\ &- \langle \partial_{i}\psi(x,\boldsymbol{\theta}) | \psi(x,\boldsymbol{\theta}) \rangle \langle \psi(x,\boldsymbol{\theta}) | \partial_{j}\psi(x,\boldsymbol{\theta}) \rangle] \end{aligned}$$

A QNN is **overparametrized** if

$$\mathbb{E}_{x}\left| rank\left(\mathcal{F}_{x}(\theta_{rand}) \right) \right|$$

does not increase when adding parametrized operations

T. Haug, et al., PRX Quantum 2, 040309 (2021) M. Larocca, et al., Nat. Comput. Sci. 3, 542 (2023)

Overparametrized QNNs

 \mathscr{F}_x is the Quantum Fisher Information Matrix \rightarrow Hessian of fidelity w.r.t. parameters

$$\begin{aligned} [\mathcal{F}_{x}(\boldsymbol{\theta})]_{ij} &= 4 \operatorname{Re}[\langle \partial_{i}\psi(x,\boldsymbol{\theta}) | \partial_{j}\psi(x,\boldsymbol{\theta}) \rangle \\ &- \langle \partial_{i}\psi(x,\boldsymbol{\theta}) | \psi(x,\boldsymbol{\theta}) \rangle \langle \psi(x,\boldsymbol{\theta}) | \end{aligned}$$

A QNN is **overparametrized** if

$$\mathbb{E}_{x}\left| rank\left(\mathcal{F}_{x}(\theta_{rand}) \right) \right|$$

does not increase when adding parametrized operations

T. Haug, et al., **PRX Quantum 2, 040309 (2021)** M. Larocca, et al., **Nat. Comput. Sci. 3, 542 (2023)**

B. T. Kiani et al., **arXiv:2001.11897 (2020)** J. Liu et al., **PRL 130, 150601 (2023)**

Generalization

Training

Test

Generalization and Overfitting

Generalization and Overfitting

Iterations

Classical Dropout TRAINING

Randomly remove neurons in **OVERPARAMETRIZED** NNs

N. Srivastava, et al., Journal of Machine Learning Research (2014)

Classical Dropout TRAINING

Randomly remove neurons in **OVERPARAMETRIZED** NNs

N. Srivastava, et al., Journal of Machine Learning Research (2014)

Employ the whole NN with rescaled weights

$$\underline{\theta}_{test} = (1 - p_{drop})\underline{\theta}_{train}$$

Quantum Dropout

F. Scala, et al., A General Approach to Dropout in Quantum Neural Networks, arXiv: 2310.04120 (2023)

Randomly remove unitaries during training in **OVERPARAMETRIZED** QNNs

Different strategies

ROTATION dropout

[1] M. Kobayashi, et al., Quantum Mach. Intell. 4, (2022) F. Scala, et al., A General Approach to Dropout in Quantum Neural Networks, arXiv: 2310.04120 (2023)

Dropout scheme At each training step

Dropout scheme At each training step

Expressibility and entanglement of QNN

Parameters rescaling at test time

Generalization **Noiseless quantum simulations**

Optimal dropout percentages: 5-8% depending on the strategy

F. Scala, et al., A General Approach to Dropout in Quantum Neural Networks, arXiv: 2310.04120 (2023)

Expressibility and entanglement

Average over 15000 different states

[1] S. Sim, et al., Adv. Quant. Tech. (2019) [2] J. L. Beckey, et al., PRL 127, 140501 (2021) [3] L. Schatzki, et al., arXiv 2209.07607 (2022)

Parameters rescaling

F. Scala, et al., A General Approach to Dropout in Quantum Neural Networks, arXiv: 2310.04120 (2023)

Parameters rescaling

Aknowledgements

UNIVERSITÀ DI PAVIA Department of Physics

Francesco Scala

Dario Gerace

SAPIENZA Università di Roma

Andrea Ceschini

Massimo Panella

Summary

A General Approach to Dropout in Quantum Neural Networks, arXiv: 2310.04120 (2023)

Quantum dropout does:

- Reduce overfitting allowing generalization
- Not reduce expressibility nor entanglement for highly overparametrized QNNs
- Not seem to need parameters **rescaling** at test time

To soon appear in Adv. Quant. Tech. STAY TUNED

