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Quantum machine learning models
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Various names:

Parametrized quantum circuits

Variational quantum circuits

Quantum neural networks

Various applications:

• Classification:
ü Havlíček et al., Nature 2019
ü Schuld et al., PRL 2019

• Regression:
ü Mitarai et al., PRA 2018

• Generative modeling:
ü Liu et al., PRA 2018

• Reinforcement learning:
ü Chen et al., IEEE 2020

ü Jerbi et al., NeurIPS 2021

Various models:



Promising empirical performance

3/18

Jerbi, Gyurik, Marshall, Briegel & Dunjko, Parametrized quantum policies for reinforcement learning, NeurIPS 2021



Provable quantum advantage
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𝑠𝑠 . . . 1 2 3 p-1

• Learning tasks with a provable quantum advantage over any classical learner:
log! 𝑥 (mod 𝑝)

Shor’s
algorithm!

Liu, Arunachalam & Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics (2021)

Theorem (informal). There exist learning tasks where: 
1. Quantum agents can achieve close-to-optimal performance with high prob.
2. Classical agents cannot achieve a performance (much) better than random, under hardness of  log!

⟩|0

⟩|0
𝑈(𝑥) 𝑉(𝑠)… …

𝑔"

log! 𝑥

(mod 𝑝)

𝑓#(𝑥)



Making use of QML
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Training phase Deployment phase

Given data 𝒟 = 𝒙 $ , 𝑔 𝒙 $ , … , 𝒙 % , 𝑔 𝒙 % ,
fit the model 𝑓𝜽 to the function 𝑔

Evaluate the model 𝑓𝜽 on new data points 𝒙

Problem: evaluation still needs a quantum 
computer!

𝑓𝜽 𝒙

∇𝜽𝑓𝜽 𝒙
+

Optimization

Outputs a trained model 𝑓𝜽



Shadow models

Main question:

Can we design QML models that are trained on a quantum computer, but,

after data collection (or “shadowing”) phase,

can later be evaluated on new data classically?
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After training 
phase:

Deployment



Classical surrogates
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Schreiber, Eisert & Meyer, Classical surrogates for quantum learning models. PRL (2023)

An existing proposal:

𝑓𝜽 𝒙 = 1
𝝎∈)

𝑐𝝎 𝜽 𝑒*+𝝎⋅𝒙 , 𝒙 ∈ ℝ.

Based on Fourier representation of quantum models:

Simply learn the coefficients 𝑐𝝎 𝜽 !

Sample complexity:    %𝑂 7!" 8 #
$

9$

To guarantee:     .𝑓𝜽 𝒙 − 𝑓𝜽 𝒙 ≤ 𝜀 ∀𝒙 ∈ ℝ$

But also suggests that surrogate trained directly can outperform!

Max frequency



Shadow models

Main questions (revisited):

Q1.  Can shadow models achieve a quantum advantage over entirely classical                                      
(classically trained and classically evaluated) models?

Q2.  Do there exist quantum models that do not admit shadow models?
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QML models are linear models
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Jerbi, …, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nature Communications (2023)

a)c) b)

(kernel)

Tr 𝜌 𝒙 𝑂(𝜽)

𝑓𝜽 𝒙
=

Tr 𝜌 𝒙 𝑂𝜶

∑/ 𝛼/𝜌(𝒙 / )

Tr 𝜌 𝒙, 𝜽 𝑂(𝜽)



From explicit model to flipped model
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Explicit model

𝑓𝜽 𝒙 = Tr 𝜌 𝒙 𝑂(𝜽)

Flipped model

𝑓𝜽 𝒙 = Tr 𝜌 𝜽 𝑂(𝒙)

𝜌 𝒙 = ⟩|𝜓(𝒙) ⟨ |𝜓(𝒙) 𝑂(𝜽) = 𝑉0 𝜽 𝑂𝑉(𝜽)

𝜌 𝜽 = ⟩|𝜓(𝜽) ⟨ |𝜓(𝜽) 𝑂(𝒙) = 𝑈0 𝒙 𝑂𝒙𝑈(𝒙)

𝜌 𝜽

𝜌 𝒙

𝑂 𝒙

𝑂 𝜽



Shadows of flipped models
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After 
training 
phase:

E.g., for 
flipped 
models:

Construct a classical shadow ;𝜌 𝜽 = 𝜔(𝜽)
That allows to estimate
.𝑓𝜽 𝒙 ≈ Tr 𝜌 𝜽 𝑂(𝒙)

for a certain family 𝑂 𝒙 𝒙

Huang, Kueng & Preskill, Predicting many properties of quantum 
states from very few measurements, Nature Physics (2020)

Deployment



Q1: Quantum advantage with shadow models

◦ Cannot construct a shadow model for the discrete-log learning task

◦ Turn instead to another learning task:
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Cube root has a trap door:
∃𝑑 such that 𝑥. mod 𝑁 = ! 𝑥 mod 𝑁

Shor’s
algorithm!

A shadowfiable flipped model 
solves the task!

𝜌 𝜽 = | ⟩𝑑, 𝑠 |⟨𝑑, 𝑠

𝑂 𝒙 =/
G,H

(𝑥G mod𝑁)| ⟩𝑑, 𝑠 |⟨𝑑, 𝑠

Flipping leads to non-classically-
evaluatable 𝑂 𝒙  



A view from complexity theory
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Generation of 
quantum advice

BPP computation 
aided by advice

BPP/qgenpoly:
(⊂ BPP/poly = P/poly)

Classical models
(BPP)

Shadow models
(BPP/qgenpoly)

Quantum models
(BQP)

DCR ?
Side remark:

A classical surrogate that 
does not use QC is in BPP.

[1] Schreiber et al., PRL 2023
[2] Landman et al., ICLR 2023
[3] Rudolph et al., 2308.09109
[4] Sweke et al., 2309.11647



Q2: Limitations of shadow models
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Easy to construct a universal model for BQP:

If this BQP-complete model is in BPP/qgenpoly    ⟹     BQP ⊆ P/poly      Very unlikely

If any model for DLP is in BPP/qgenpoly               ⟹     DLP ⊆ P/poly        Very unlikely
Similarly,



A view from complexity theory
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Generation of 
quantum advice

BPP computation 
aided by advice

BPP/qgenpoly:
(⊂ BPP/poly = P/poly)

Classical models
(BPP)

Shadow models
(BPP/qgenpoly)

Quantum models
(BQP)

DCR DLP



Non Fourier shadow models?

◦ Bonus question: do there exist models that are not efficiently Fourier shadowfiable?
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𝑓𝜽 𝒙 = 1
𝝎∈)

𝑐𝝎 𝜽 𝑒*+𝝎⋅𝒙 , 𝒙 ∈ ℝ1

Black-box queries of 𝑓𝜽 𝒙  (up to add. error) to learn the coefficients 𝑐𝝎 𝜽

𝑓' 𝒙 = Tr 𝜌 𝒙 𝑂(𝒚) , 𝒙 ∈ ℝ(, 𝒚 ∈ 0,1 (

𝜌 𝒙 =⊗)*+
( 𝑅' 𝑥) | ⟩0 |⟨0 𝑅'

, 𝑥)
𝑂 𝒚 = | ⟩𝒚 |⟨𝒚

Sample complexity:  Ω(2I)    v.s.   %𝑂 7!% 8 #
$

9$

To guarantee:    .𝑓𝜽 𝒙 − 𝑓𝜽 𝒙 ≤ 1/4 ∀𝒙 ∈ ℝ(
Take:

Easy to see for 𝒙 ∈ 0, JK
I

, it’s a Grover oracle.

But trivially shadowfiable when flipped!
or, e.g., 𝑂 𝒚 = 𝑈234| ⟩𝒚 |⟨𝒚 𝑈234

0



All shadowfiable models are shadowfiable flipped models

◦ Bonus answer: Flipped models are shadow-universal

◦ Proof:
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Summary

◦ How do (shadowfiable) flipped models do in practice?

◦ New designs for shadow models?
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Main questions:

Q1.  Can shadow models achieve a quantum advantage 
over entirely classical models?

Q2.  Do there exist quantum models that do not admit 
shadow models?

Outlook



Special thanks

Casper Gyurik Riccardo MolteniSimon Marshall Vedran Dunjko



Generalization performance

◦ Learning performance:
Iℒ 𝑓𝜽 𝑣. 𝑠. ℒ- 𝑓𝜽

◦ For a flipped model:         𝑓𝜽 𝒙 = Tr 𝜌 𝜽 𝑂(𝒙)
For Iℒ 𝑓𝜽 = 𝜂,

if the training set size M ≥ Q𝒪 ( . !
/ -01 "

then ℒ- 𝑓𝜽 ≤ 𝜀

Expected loss
Pr𝒙∈𝒳 𝑓𝜽 𝒙 − 𝑔 𝒙 > 𝛾

Training loss

max
/∈{$,…,%}

|𝑓𝜽 𝒙 / − 𝑔 𝒙 / |

Aaronson, The Learnability of Quantum States. Proceedings of Royal Society A (2007)



Flipping bounds

◦ Lower bound:

There exist explicit models Tr 𝜌 𝒙 𝑂(𝜽) , with 𝑂 + = 𝑑 and 𝑛 = 𝒪(log 𝑑) qubits,

such that, for any flipped model Tr 𝜌′ 𝜽 𝑂′(𝒙) , if

Tr 𝜌 𝒙 𝑂 𝜽 − Tr 𝜌2 𝜽 𝑂2 𝒙 ≤ 𝜀, ∀𝒙, 𝜽

then 𝑚 𝑂2 3
4 ≥ Ω d4 +

4
− 𝜀

4

◦ Upper bound:

We give an exact procedure (𝜀 = 0) that uses 𝑚 = 𝑛 + 1 qubits and guarantees 𝑂 3 = 𝑂 +.

Based on a renormalization of 𝑂 𝜽 and importance sampling.


