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Quantum machine learning models
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Jerbi, Gyurik, Marshall, Briegel & Dunjko, Parametrized quantum policies for reinforcement learning, NeurIPS 2021
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Provable quantum advantage

* Learning tasks with a provable quantum advantage over any classical learner:

* g* | log, x (mod p)
log,(Z) ) D ' Z,T
$ (modp) m ”J
-2 0 1 - P p-3 1 2
logg x Shor’s @
algorithm! |0> 4 N\ ( b ~
s L U V(s) : fs(x)
|O> _\ J U J/ 0(

Theorem (informal). There exist learning tasks where:

1. Quantum agents can achieve close-to-optimal performance with high prob.
2. Classical agents cannot achieve a performance (much) better than random, under hardness of log,

Liu, Arunachalam & Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics (2021)
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Making use of QML

Training phase

Given data D = (x(l), g(x(l))),

fit the model fy to the function g

f
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Optimization

Outputs a trained model fy

Deployment phase

Evaluate the model fy on new data points x

Problem: evaluation still needs a quantum
computer!
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Can we design QML models that are trained on a quantum computer, but,

Shadow models

Main question:

after data collection (or “shadowing”) phase,

can later be evaluated on new data classically?

After training
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An existing proposal:
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Classical surrogates

Based on Fourier representation of quantum models:
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Schreiber, Eisert & Meyer, Classical surrogates for quantum learning models. PRL (2023)
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Shadow models

Main questions (revisited):

Q1. Can shadow models achieve a quantum advantage over entirely classical

(classically trained and classically evaluated) models?

Q2. Do there exist quantum models that do not admit shadow models?
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OML models are linear models

, fo(x)
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Jerbi, ..., Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nature Communications (2023)
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From explicit model to flipped model

Explicit model

fo(x) = Tr[p(x)0(6)]

Flipped model
fo(x) = Tr[p(8)0(x)]
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shadows of flipped models
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11/18



Q1: Quantum advantage with shadow models

o Cannot construct a shadow model for the discrete-log learning task Flipping leads to non-classically-
evaluatable O (x)

o Turn instead to another learning task:

A shadowfiable flipped model
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A view from complexity theory

Classical models \ Shadow models Quantum models

(BPP) (BPP/qgenpoly) (BQP)

Side remark:
Classical poly-time A classical surrogate that
(ree — does not use QC is in BPP.
BPP/qgenpoly: Mw, 9) Do) * :
qsenpoly: | |0) L r7( \w(e) A f() (x) [1] Schreiber et al., PRL 2023

(c BPP/poly = P/poly) [2] Landman et al., ICLR 2023
Generation of BPP computation [3] Rudolph et al., 2308.09109

quantum advice aided by advice [4] Sweke et al., 2309.11647
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Q2: Limitations of shadow models

Easy to construct a universal model for BQP:

If this BQP-complete model is in BPP/qgenpoly = BQP S P/poly = Very unlikely
Similarly,
If any model for DLP is in BPP/qgenpoly — DLP < P/poly Very unlikely
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A view from complexity theory

Classical models | Shadow models Quantum models

(BPP) (BPP/qgenpoly) (BQP)
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Generation of BPP computation
quantum advice aided by advice
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Non Fourier shadow models?

o Bonus question: do there exist models that are not efficiently Fourier shadowfiable?

Black-box queries of fg(x) (up to add. error) to learn the coefficients c,, (@)
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But trivially shadowfiable when flipped!
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All shadowfiable models are shadowfiable flipped models
o Bonus answer: Flipped models are shadow-universal
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summary

Main questions:

Q1. Can shadow models achieve a quantum advantage

over entirely classical models?

Q2. Do there exist quantum models that do not admit
shadow models?

Classical models
(BPP)

Shadow models
(BPP/qgenpoly)

Quantum models

(BQP)
* DLP

Outlook

o How do (shadowtfiable) flipped models do in practice?
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(Generalization performance

o Learning performance:

o For a flipped model:
For L(fg) =,

ﬁ(fg) D.S. Ly(fg)
Training loss Expected loss
p — >
dnax, Ifo (™) = g(x™)] rxex [lfo(x) — g(x)| > v]

fo(x) = Tr[p(8)0(x)]

if the training set size M > O (
then £,,(fg) < ¢

Aaronson, The Learnability of Quantum States. Proceedings of Royal Society A (2007)
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Flipping bounds

—

o Lower bound:

v ]U(x)[%IO
|0) *

Param. state Encoding obs.
There exist explicit models Tr[p(x)0(80)], with ||0]|; = d and n = O(logd) qubits, :
such that, for any flipped model Tr[p'(@)0'(x)], if
Tr[p(x)0(0)] — Tr[p" () 0" (x)]| < &,Vx, 6

2 2 l_ 2
thenm [|0'||5 = Q (d (2 8) )
o Upper bound:

We give an exact procedure (¢ = 0) that uses m = n + 1 qubits and guarantees ||0||,, = ||0]|;.

Based on a renormalization of 0(0) and importance sampling.




