Neural quantum state tomography, improvements and applications

Toward digital twins for quantum states
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Motivation 1-Big quantum data!

 Quantum experiments are creating increasing amount of experimental data.

 The amount of classical memory required to express quantum states grow exponentially.
 We'll have a huge amount of data to post-process, analyze, and collect statistics from.

 BUT! Quantum states are difficult to express classically?

e Goal: Bend the curve of exponential classical memory required for expressing quantum states.
ML has been very successful in doing the same for classical big data: turning big data into Al.

* Let’s do the same to quantum data to achieve operational access to quantum data instead of
storing exponentially large tables and sweeping over them in every query.

e Applications:
* Cleaning up the state! Imposing purity, symmetries, etc. of the target state.
* Manipulating the state: decreasing its energy “further” variationally.

* Observable estimation at the cost of classical inference from a model, rather than sweeping over
exponentially large raw data.
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Motivation 2—Classical cloning is cheap!

* Unlike quantum states, classical memory is easy to replicate.

e Calculating overlaps of digital twins is much easier than
performing swap operations:

* Fidelity estimation, o ‘O> —H ® H /%=
* Entanglement entropy estimation.
e Applications: ‘¢> X
e Verificati f t tati
erification of quantum computation, ‘¢> S

e Cross platform benchmarks.

@—» i
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Motivation 3—Quantum computing is expensive!

* Quantum experiments are expensive to do,
repeat, and make widely accessible.

* Fault-tolerant quantum computers will be large
sophisticated facilities.

At 1USD /second /1000 qubits, Shor’s
factorization will cost +500M.

* Need for efficient and standardized ways to
make the results of experiments available to the
community.

=55 Launch IBM Quantum

Pay'AS'YOU' a I‘\<iv > quant-ph > arXiv:1905.09749
Go Plan :

| Quantum Physics
via IBM Cloud

[Submitted on 23 May 2019 (v1), last revised 13 Apr 2021 (this version, v3)]

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

$1.60 USD / second Craig Gidney, Martin Ekera
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Motivation 3—Quantum computing is expensive!

R I\

Jm e

Institute for Quantum Com puting and Department o f Physics & Astronom y, University of Water loo | Perimeter Institute Quantum Inte lligence La b | 1QBit



Neural-network quantum state tomography

* Neural quantum state  Letter | Published: 26 February 2018

tomography aims at - Neyral-network quantum state tomography
reconstructing a

quantum state using Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko & Giuseppe Carleo
a generative model.

Nature Physics 14, 447-450 (2018) | Cite this article

30k Accesses | 435 Citations \ 1565 Altmetric | Metrics

* As astandalone algorithm, it is compared to Monte-Carlo algorithms for ground state
preparation.

* As a quantum state tomography method, it is studied from the tomographic/information
theoretic aspect (i.e., how well is the reconstruction, at what cost).

e Qur goal: Turn NNQST into the quantum information scientist’s daily R&D tools.

e This talk:
* (a) Applications in ground state preparation,
* (b) Improvements using the classical shadow formalism.

Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo | Perimeter Institute Quantum Intelligence Lab | 1QBit



Machine learning introduction

Generative models historically have emerged in ML from image processing tasks.
A different collection of deep generative models have been developed motivated by natural language processing (NLP)
tasks.

» Auto-regressive models: p(o) = [1; p(g;lo1, ..., 0:_1),

 Two common architectures in NLP:

e Recurrent neural networks

e Transformers Sequence to Sequence Learning

with Neural Networks
RNNs:
* Precursor to the more powerful SOTA transformers
* Encoder-decoder mechanism Tlya Sutskever Oriol Vinyals Quoc V. Le
. Google Google Google
* Seguence to sequence architecture ilyasu@google.com vinyals@google.com qvl@google.com
Article | Published: 11 March 2019 w X Y z <EO0S>
Reconstructing quantum states with generative T T T T T
models C i~ = - 1+~ - - ]
Juan Carrasquilla &, Giacomo Torlai, Roger G. Melko & Leandro Aolita I TB c <FOS- I} I I I

Nature Machine Intelligence 1, 156-161(2019) | Cite this article Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

2225 Accesses | 56 Citations | 33 Altmetric | Metrics

Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo | Perimeter Institute Quantum Intelligence Lab | 1QBit



Attention

* As opposed to RNNs, all hidden Correll Untvor
states are available at the same Eg)) Cornell University
time.

Computer Science > Computation and Language

* Attention was then incorporated in ~ 3™V:1706:03762 ()
a breakthrough model called the [Submitted on 12 Jun 2017 (v1), last revised 2 Aug 2023 (this version, v7)]

Transformer, which became a

oy Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
critical component of Dall-E, 12 Polosukhin

Attention Is All You Need

ChatGPT, Bard, etc.

* Perhaps better parametrized : @ T
P | x \V (gg) ) Cornell University
models for quantum data should be FAl 2 :

developed._” Condensed Matter > Strongly Correlated Electrons
arXiv:1912.11052 (cond-mat)

[Submitted on 23 Dec 2019]

Probabilistic Simulation of Quantum Circuits
with the Transformer

Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K. Clark, Maksims Vaolkovs, Leandro Aolita
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Transformers

* “A model architecture eschewing recurrence and instead
relying entirely on an attention mechanism to draw global
dependencies between input and output.” [Vaswani ‘17]

* Avoid relying on temporal dependence of elements to each
other.

* Decide how important each element is with respect to all
the other elements in the original sequence.
* The architecture includes an encoder and a decoder.

* Relies on two mechanism for attention:
* A self-attention mechanism used in the encoder.
e A cross-attention mechanism used in the decoder.

* The positional encoding can be used to keep track of the
order in a sequence if needed (e.g., in machine
translation).
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Queries, keys, and values

Three types of vectors as learnable parameters:
* Queries:q = W, x
* Keys: k =W x
* Values:v =W, x

Keys and queries are of same dimension, but values may be
of arbitrary dimension. We ignore this detail and simply write
0,K,V € Rt

The attention weights are then generated via
a = [soft](arg) mﬁaX(KTQ) .

The output state is then generated using A = (a) and V/:
H =VA e R¥,
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Neural error mitigation

* Error mitigation: post-processing step to alleviate errors affecting the output of a noisy quantum
device.

* Many different creative ways to approach error mitigation
* Average the results of circuits from a quasi-probability distribution (Temme et al., 2017)
e Learn a scalable noise model by comparing noisy and noise-free circuits (Czarnik et al. 2020)

* Why stop there? We can clean up neural quantum states in other ways too (e.g., re-enforcing
symmetries).

* Generally, does not require significant

additional quantum resources; T
* Relevant for current and near-term

guantum processors. ‘W

Schematics by E Bennewitz
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Neural error mitigation

Quantum Neural L
. . Variational
Simulation on Quantum State
. Monte Carlo
Quantum Device Tomography
Post-process |V )
Prepare quantum ReCOHStI:UCt using the
state: (W (6)) with a variational
o) = U(9) = |9(6)) neural quantum principle:
state |W) from a Ey ~ min B =
measurement min (Vx| H [Ty)
dataset D l
Take projective l _
measurements: Pass the trained |¥) Return [W) gy
to VMC algorithm
v(9)) = _
~
Neural Error Mitigation
N _/ —

~" . ~"
Quantum state on quantum device Neural Quantum State |Wy)
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Neural error mitigation

@l e | Eac | appodmate
t .
W, (o) = {pr(o)? LG Approximate

¥) = D e P@W()lle) [¥3) = ) el 4w (0)]lo)

o o
* Represent the probability amplitudes via the auto-regressive expansion p;(a) = [[iv,p(0;|0<;) and
sample from p, (o).

* Interpret the complex output of a Transformer as:
In(Wy(0)) =i ¢;(0) + In(|¥;(0)]) ,

 Real part: log probability %ln('p,l(a)), and
 Imaginary part: phase ¢, (o).

* Optimize A according to some cost function.
Wy(or)
Wi(o)

* To compute observables of interest (0) = Y., p1(0) 0, Where Oj5c = X5/ 0,
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Neural error mitigation

e Step 1 (neural guantum state tomography): Optimize A with SGD according to cross entropy

Li== ) proe(@n@a())
o€{0,1}V

for which we estimate py g using measurement samples D =1{(Z,0),(Z,,1),(X3,1),...}.

OMeD

* Step 2 (variational Monte-Carlo): Optimize A to obtain lower expected energy min E; = min(‘P,—l|I’-I\|‘P,1)

according to

Ny
1 .
E, = z p,1(0) Eloc(o-) ~ Fz Eioc (0-30)) )
o o =1

W,(or)
where Ej,.(05) = Yo/ Hg o % -
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Quantum chemistry (Example 1)

e Electronic structure Hamiltonian of LiH.

* Jordan-Wigner transformation: convert to a qubit-based

Hamiltonian.

* VQE ansatz: the “hardware-efficient” ansatz of Kandala,

et al. Nature (2017).
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Quantum chemistry (Example 1)

 Statistics of each computational basis state at bond length 1.4.

* Trick: maximize the L1 norm ZJE{O 1IN |W2(0)].

100 .
Exact —@— NQST

> o—¢
5 10—2 i '\ 4./‘.\_’_ NEM
2 y So——a \ /\'
e P——0
£ 107 4
106 : : : : /\ . /\

Phase Error
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Lattice gauge theory (Example 2)

e Simulation of Lattice Schwinger model (an abelian lattice gauge

theory, toy model for guantum electrodynamics in 1D) following

the ansatz of Kokail, et al. Nature 569.7756 (2019).

Bare electron mass term )
w N-1 m N N
~ ~ ~ A ~ . A _ A2
H=o ) (XXj+ YY) + o > (-1/2; +3) Lj.

= j=1 j=1

Creation and annihilation of electron--positron pairs Coupling to electric field

 The goal is to study a phase transition at about m=-0.7.
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Lattice gauge theory (Example 2)
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Comparison of NEM and standalone VMC
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Learning the phases

* Perform random Clifford tails U; and
measure bit strings |b; ).

* Collect stabilizer states: |¢p;) = UiT|bl-).

* Average effect of the Clifford twirling is U, 1b;)
a depolarizing noise channel M with
strength (2™ + 1)~ 1.

o =
* Classical shadows: p; = M ~2(|¢; }¢i])- i/ m

* Target state: |P}(P| = E[M ' (|p;}{p;:])]. “—
* New loss:

N
1 1
L= lal@) ~ 1= ) Tr(0p) = 1 —z—n(l ——) ——Z|<¢l|w>|2
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Quantum material: Example 3

1D anti-ferromagnetic Heisenberg model two Trotter steps away from | TITITI).

n-1 Bl Target state
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Robustness to noise

* Following D. E. Koh and S. Grewal, Quantum 6, 776 (2022):

5 (€U, b)) = 1Nl + (1 — -1 )2 _ fid(£) -1

=== Estimated infidelity === Exact infidelity Transformed
(loss function) loss function
L Scaled gradient: a  Amplitude damping channel (applied after U;)
2 S/ () 0
VAL(E) ~ RI(PEDAs)) (52 | G
)~ 7@ 2 m ) (@ o) o
0007 %0 o065 oo 1 015 020 025
* And the Shlfted IOSS funCtion iS b  Local depolarizing channel (applied after each CNOT within U;)
1.00
1 4™ — 1) f(E)—-2"+1
L(E)= L(I) + ( )/ (€) ~ 050 |
2n +1)f(€) r2r+1)f(6) o
0.00 ¢ , , . :
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1-f
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Comparison with direct shadow estimations

* Better generalization for non-local a b
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Concluding remarks

Quantum experiments are very difficult to perform:
* Expensive and long experimental cycles.

“No cloning” has made us not think hard enough how to
e Capture the experiments in re-usable fashion;
* Make the results of the experiment available to the community.

How can NSQST be better than just the list of measurements from a tomography scheme?
* The same way GPT is much more useful than the entire corpus of text on the web.
 NSQST provides an operational representation of the quantum state for

e Other processes and applications
* Forinterfacing between devices

The neural network representation is a digital twin of the quantum state:
e This shifts the value from guantum experiments to quantum data.
* Inference from the digital twin is much cheaper than rerunning quantum experiments.
* The digital twin is much more malleable and easier to interface with than the quantum computer.
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