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• Quantum experiments are creating increasing amount of experimental data.

• The amount of classical memory required to express quantum states grow exponentially.

• We’ll have a huge amount of data to post-process, analyze, and collect statistics from.

• BUT! Quantum states are difficult to express classically?

• Goal: Bend the curve of exponential classical memory required for expressing quantum states.

• ML has been very successful in doing the same for classical big data: turning big data into AI.

• Let’s do the same to quantum data to achieve operational access to quantum data instead of 
storing exponentially large tables and sweeping over them in every query.

• Applications:
• Cleaning up the state! Imposing purity, symmetries, etc. of the target state.

• Manipulating the state: decreasing its energy “further” variationally.

• Observable estimation at the cost of classical inference from a model, rather than sweeping over 
exponentially large raw data.

Motivation 1–Big quantum data!
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• Unlike quantum states, classical memory is easy to replicate.

• Calculating overlaps of digital twins is much easier than
performing swap operations:
• Fidelity estimation,

• Entanglement entropy estimation.

• Applications:
• Verification of quantum computation,

• Cross platform benchmarks.

Motivation 2–Classical cloning is cheap!

Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo | Perimeter Institute Quantum Intelligence Lab | 1QBit3



• Quantum experiments are expensive to do,
repeat, and make widely accessible.

• Fault-tolerant quantum computers will be large
sophisticated facilities.

• At 1 USD / second / 1000 qubits, Shor’s
factorization will cost +500M.

• Need for efficient and standardized ways to
make the results of experiments available to the
community.

Motivation 3–Quantum computing is expensive!
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Motivation 3–Quantum computing is expensive!
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• Neural quantum state
tomography aims at
reconstructing a
quantum state using
a generative model.

• As a standalone algorithm, it is compared to Monte-Carlo algorithms for ground state 
preparation.

• As a quantum state tomography method, it is studied from the tomographic/information 
theoretic aspect (i.e., how well is the reconstruction, at what cost).

• Our goal: Turn NNQST into the quantum information scientist’s daily R&D tools.

• This talk:

• (a) Applications in ground state preparation,

• (b) Improvements using the classical shadow formalism.

Neural-network quantum state tomography
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• Generative models historically have emerged in ML from image processing tasks.

• A different collection of deep generative models have been developed motivated by natural language processing (NLP) 
tasks.

• Auto-regressive models: 𝑝 𝜎 = ς𝑖 𝑝 𝜎𝑖 𝜎1, … , 𝜎𝑖−1),

• Two common architectures in NLP:

• Recurrent neural networks

• Transformers

• RNNs:

• Precursor to the more powerful SOTA transformers

• Encoder-decoder mechanism

• Sequence to sequence architecture

Machine learning introduction
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• As opposed to RNNs, all hidden 
states are available at the same 
time.

• Attention was then incorporated in 
a breakthrough model called the 
Transformer, which became a 
critical component of Dall-E, 
ChatGPT, Bard, etc.

• Perhaps better parametrized 
models for quantum data should be 
developed…. 

Attention
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• “A model architecture eschewing recurrence and instead 
relying entirely on an attention mechanism to draw global 
dependencies between input and output.” [Vaswani ‘17]
• Avoid relying on temporal dependence of elements to each 

other.

• Decide how important each element is with respect to all 
the other elements in the original sequence.

• The architecture includes an encoder and a decoder.

• Relies on two mechanism for attention:
• A self-attention mechanism used in the encoder.

• A cross-attention mechanism used in the decoder.

• The positional encoding can be used to keep track of the 
order in a sequence if needed (e.g., in machine 
translation).

Transformers
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• Three types of vectors as learnable parameters:

• Queries: 𝑞 = 𝑊𝑞 𝑥

• Keys: 𝑘 = 𝑊𝑘 𝑥

• Values: 𝑣 = 𝑊𝑣 𝑥

• Keys and queries are of same dimension, but values may be 
of arbitrary dimension. We ignore this detail and simply write 
𝑄, 𝐾, 𝑉 ∈ ℝ𝑑×𝑡.

• The attention weights are then generated via
𝑎 = 𝑠𝑜𝑓𝑡 𝑎𝑟𝑔 max

𝛽
(𝐾𝑇𝑄) .

• The output state is then generated using A = (𝑎) and 𝑉:
𝐻 = 𝑉𝐴 ∈ ℝ𝑑×𝑡 .

Queries, keys, and values
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• Error mitigation: post-processing step to alleviate errors affecting the output of a noisy quantum 
device.

• Many different creative ways to approach error mitigation
• Average the results of circuits from a quasi-probability distribution (Temme et al., 2017)

• Learn a scalable noise model by comparing noisy and noise-free circuits (Czarnik et al. 2020)

• Why stop there? We can clean up neural quantum states in other ways too (e.g., re-enforcing 
symmetries).

• Advantages:
• Generally, does not require significant

additional quantum resources;

• Relevant for current and near-term
quantum processors.

Neural error mitigation
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Neural error mitigation
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• How do we represent 𝜙𝜆(𝝈) and

Ψ𝜆 𝝈 = 𝑝𝜆(𝝈) ? 

• Represent the probability amplitudes via the auto-regressive expansion 𝑝𝜆 𝜎 = ς𝑖=0
𝑛 𝑝(𝜎𝑖|𝜎<𝑖) and 

sample from 𝑝𝜆(𝜎).

• Interpret the complex output of a Transformer as:
ln Ψ𝜆(𝝈) = 𝑖 𝜙𝜆 𝜎 + ln Ψ𝜆 𝜎 ,

• Real part: log probability  
1

2
ln 𝑝𝜆 𝝈 , and

• Imaginary part: phase 𝜙𝜆 𝝈 .

• Optimize 𝜆 according to some cost function.

• To compute observables of interest 𝑂 = σ𝜎 𝑝𝜆 𝜎 𝑂𝑙𝑜𝑐, where 𝑂𝑙𝑜𝑐 = σ𝜎′ 𝑂𝜎𝜎′
Ψ𝜆(𝜎′)

Ψ𝜆(𝜎)
.

Neural error mitigation
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Exact Approximate

ۧ|Ψ =

𝜎

𝑒𝑖 ϕ(𝝈) Ψ(𝝈) ۧ|𝝈 ۧ|Ψ𝜆 =

𝜎

𝑒𝑖 𝜙𝜆(𝝈) Ψ𝜆(𝝈) ۧ|𝝈



• Step 1 (neural quantum state tomography): Optimize 𝜆 with SGD according to cross entropy

𝐿𝜆 = − 

𝜎∈{0,1}𝑁

𝑝𝑉𝑄𝐸 𝜎 ln(𝑝𝜆(𝜎))

for which we estimate 𝑝𝑉𝑄𝐸 using measurement samples, 𝐷 = (𝑍1, 0 , 𝑍2, 1 , 𝑋3, 1 , … }.

𝐿𝜆 ≈ −
1

𝐷


𝜎𝑀∈𝐷𝑀

ln 𝑝𝜆 𝜎𝑀 .

• Step 2 (variational Monte-Carlo): Optimize 𝜆 to obtain lower expected energy min𝐸𝜆 = min Ψ𝜆
𝐻 Ψ𝜆

according to

𝐸𝜆 =

𝜎

𝑝𝜆 𝜎 𝐸𝑙𝑜𝑐 𝜎 ≈
1

𝑁𝑠


𝑖=1

𝑁𝑠

𝐸𝑙𝑜𝑐 𝜎𝑠
𝑖

,

where 𝐸𝑙𝑜𝑐 𝜎𝑠 = σ𝜎′𝐻𝜎𝑠𝜎′
Ψ𝜆(𝜎′)

Ψ𝜆(𝜎𝑠)
.

Neural error mitigation
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• Electronic structure Hamiltonian of LiH.

• Jordan-Wigner transformation: convert to a qubit-based 
Hamiltonian.

• VQE ansatz: the “hardware-efficient” ansatz  of Kandala, 
et al. Nature (2017).

Quantum chemistry (Example 1)
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• Statistics of each computational basis state at bond length 1.4.

• Trick: maximize the L1 norm σ𝜎∈ 0,1 𝑁 |Ψ𝜆(𝜎)| .

Quantum chemistry (Example 1)
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Lattice gauge theory (Example 2)
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• Simulation of Lattice Schwinger model (an abelian lattice gauge 

theory, toy model for quantum electrodynamics in 1D) following 

the ansatz of Kokail, et al. Nature 569.7756 (2019).

• The goal is to study a phase transition at about m= -0.7.

Coupling to electric field

Bare electron mass term

Creation and annihilation of electron--positron pairs



Lattice gauge theory (Example 2)
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Comparison of NEM and standalone VMC
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Learning the phases
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• Perform random Clifford tails 𝑈𝑖 and
measure bit strings |𝑏𝑖ۧ.

• Collect stabilizer states: 𝜙𝑖 = 𝑈𝑖
†|𝑏𝑖ۧ.

• Average effect of the Clifford twirling is
a depolarizing noise channel ℳ with
strength 2𝑛 + 1 −1.

• Classical shadows: 𝜌𝑖 = ℳ−1(|𝜙𝑖ۧ⟨𝜙𝑖|).

• Target state: |Φۧ⟨Φ| = 𝔼[ℳ−1(|𝜙𝑖ۧ⟨𝜙𝑖|)].

• New loss:

1 − 𝜓𝜆 Φ ≈ 1 −
1

𝑁


𝑖

𝑁

𝑇𝑟 𝑂𝜆𝜌𝑖 = 1 −
1

2𝑛
1 −

1

𝑓
−
1

𝑁


𝑖

𝑁

𝜙𝑖 𝜓𝜆
2



• 1D anti-ferromagnetic Heisenberg model two Trotter steps away from | ↑↓↑↓↑↓ۧ.

𝐻 = 

𝑖=1

𝑛−1

𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝑍𝑖𝑍𝑖+1

Quantum material: Example 3
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• Following D. E. Koh and S. Grewal, Quantum 6, 776 (2022):

• Scaled gradient: 

• And the shifted loss function is 

Robustness to noise
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• Better generalization for non-local 
observations (e.g., long Pauli strings) in a 
QCD example:

Comparison with direct shadow estimations
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• Quantum experiments are very difficult to perform:
• Expensive and long experimental cycles.

• “No cloning” has made us not think hard enough how to
• Capture the experiments in re-usable fashion;

• Make the results of the experiment available to the community.

• How can NSQST be better than just the list of measurements from a tomography scheme?
• The same way GPT is much more useful than the entire corpus of text on the web.

• NSQST provides an operational representation of the quantum state for

• Other processes and applications

• For interfacing between devices

• The neural network representation is a digital twin of the quantum state:
• This shifts the value from quantum experiments to quantum data.

• Inference from the digital twin is much cheaper than rerunning quantum experiments.

• The digital twin is much more malleable and easier to interface with than the quantum computer.

Concluding remarks
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