Efficient information recovery from Pauli noise via classical shadow

Yifei Chen¹, Zhan Yu^{1,2}, Chenghong Zhu^{1,3}, and Xin Wang^{1,3}

1:Baidu Research 2:National University of Singapore 3:HKUST (Guangzhou)

arXiv: 2305.04148

Shadow Information

- Results we usually want from quantum computing are still **classical information**
- **Shadow information** is the expectation value of some chosen observable: $Tr[O\sigma]$

Shadow Information

- Results we usually want from quantum computing are still **classical information**
- **Shadow information** is the expectation value of some chosen observable: $Tr[O\sigma]$

• Shadow information is the target of many quantum algorithms

Shadow Information

- Results we usually want from quantum computing are still **classical information**
- **Shadow information** is the expectation value of some chosen observable: $Tr[O\sigma]$

- Shadow information is the target of many quantum algorithms
- Estimation of the information $Tr[*O* σ]$ is obtained via making **measurements** with the corresponding observable O and post-processing.

Pauli noise

• One of the most standard theoretical models for quantum noise in the study of quantum error correction and mitigation is Pauli noise.

Pauli noise Kraus representation:

$$
\mathcal{P}(\sigma) = p_I \sigma + p_x X \sigma X + p_y Y \sigma Y + p_z Z \sigma Z,
$$

where X, Y, Z are Pauli matrices and $p_1 + p_x + p_y + p_z = 1$.

Pauli noise

• One of the most standard theoretical models for quantum noise in the study of quantum error correction and mitigation is Pauli noise.

Pauli noise Kraus representation:

 $\mathcal{P}(\sigma) = p_I \sigma + p_x X \sigma X + p_y Y \sigma Y + p_z Z \sigma Z,$

where X, Y, Z are Pauli matrices and $p_1 + p_x + p_y + p_z = 1$.

• Pauli twirling can be applied to converts any noise channel to a Pauli channel

Problem of recovering from Pauli noise

• Given access to an unknown Pauli channel P and a noisy state $P(\sigma)$.

Problem of recovering from Pauli noise

- Given access to an unknown Pauli channel P and a noisy state $P(\sigma)$.
- For a known k-local observable O, $||0|| = 1$, we want a function $f(\mathcal{P}(\sigma), 0)$ that can predict the ideal value of $tr(O\sigma)$ up to accuracy ϵ , i.e.

 $|f(\mathcal{P}(\sigma), 0) - tr(O\sigma)| \leq \epsilon$

Known method

- Probabilistic Error Cancellation
	- Given description of the channel P, find the map D such that $tr(O D \circ P(\sigma)) = tr(O \sigma)$.
	- D is not CPTP but can be written as a linear combination of CPTP maps.
	- Simulate action of D by probabilistic sampling.

Zhao, Xuanqiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.

Known method

- Probabilistic Error Cancellation
	- Given description of the channel P, find the map D such that $tr(O D \circ P(\sigma)) = tr(O \sigma)$.
	- D is not CPTP but can be written as a linear combination of CPTP maps.
	- Simulate action of D by probabilistic sampling.
- Description of the channel required
	- Tomography computational inefficient and still an approximation
	- Typically requires number of copies exponentially in number of qubits

Zhao, Xuanqiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.

Known method

- Probabilistic Error Cancellation
	- Given description of the channel P, find the map D such that $tr(O D \circ P(\sigma)) = tr(O \sigma)$.
	- D is not CPTP but can be written as a linear combination of CPTP maps.
	- Simulate action of D by probabilistic sampling.
- Description of the channel required
	- Tomography computational inefficient and still an approximation
	- Typically requires number of copies exponentially in number of qubits
- Implementation of arbitrary CPTP map required

Main result

• Efficient algorithm for information recovery from Pauli noise for local observable

Main result

- Efficient algorithm for information recovery from Pauli noise for local observable
- Channel access $\mathcal{O}(\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $\mathcal{O}\big(n^k\log(n)/\epsilon^2\big)$

Main result

- Efficient algorithm for information recovery from Pauli noise for local observable
- Channel access $\mathcal{O}(\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $\mathcal{O}\big(n^k\log(n)/\epsilon^2\big)$

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

 $\hat{\sigma} = \otimes_i (3U_i^{\dagger} | b_i \rangle \langle b_i | U_i - \mathbb{I}) = \otimes_i (3 | t_i \rangle \langle t_i | - \mathbb{I})$

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

Repeated for a few times

 $\hat{\sigma} = \otimes_i (3U_i^{\dagger} | b_i \rangle \langle b_i | U_i - \mathbb{I}) = \otimes_i (3 | t_i \rangle \langle t_i | - \mathbb{I})$

Can estimate shadow information for M k-local observables to accuracy ϵ with $\mathcal{O}(\log(M)/\epsilon^2)$

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Learning the Pauli channel

- Observation 1 : $\text{tr}\big(\textit{OP}(\sigma)\big) = \textit{tr}\big(\mathcal{P}^{\dagger}(O)\sigma\big)$, where \mathcal{P}^{\dagger} is the adjoint map of $\mathcal{P}.$
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$
\mathcal{P}^{\dagger}(Q) = \lambda_{Q} Q,
$$

Learning the Pauli channel

- Observation 1 : $\text{tr}\big(\textit{OP}(\sigma)\big) = \textit{tr}\big(\mathcal{P}^{\dagger}(O)\sigma\big)$, where \mathcal{P}^{\dagger} is the adjoint map of $\mathcal{P}.$
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$
\mathcal{P}^{\dagger}(Q) = \lambda_{Q} Q,
$$

• How can we estimate λ_0 ?

For any Pauli operator Q , we have that

$$
\mathbb{E}_{\rho \sim \mathcal{D}^0} \, tr\big(Q\mathcal{P}(\rho)\big) tr(Q\rho) = \left(\frac{1}{3}\right)^{|Q|} \lambda_Q
$$

where \mathcal{D}^0 is the uniform distribution over product Pauli eigenstates.

Learning the Pauli channel

- Observation 1 : $\text{tr}\big(\textit{OP}(\sigma)\big) = \textit{tr}\big(\mathcal{P}^{\dagger}(O)\sigma\big)$, where \mathcal{P}^{\dagger} is the adjoint map of $\mathcal{P}.$
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$
\mathcal{P}^{\dagger}(Q) = \lambda_{Q} Q,
$$

• How can we estimate λ_0 ?

For any Pauli operator Q , we have that

$$
\mathbb{E}_{\rho \sim \mathcal{D}^0} \ tr\big(Q\mathcal{P}(\rho)\big) tr(Q\rho) = \left(\frac{1}{3}\right)^{|Q|} \lambda_Q
$$

where \mathcal{D}^0 is the uniform distribution over product Pauli eigenstates.

$$
\hat{\lambda}_Q = 3^{|Q|} \cdot \frac{1}{N} \sum_{i=1}^N \prod_{j=1}^n tr\left(Q_j(3|t_{ij})\langle t_{ij}| - 1\!\!\!1)\right) tr(Q_j|s_{ij})\langle s_{ij}|)
$$

• For any
$$
\overline{O} = \sum_{Q} \overline{\alpha}_{Q} Q
$$
,
tr $(\overline{O}P(\sigma)) = \sum_{Q} \overline{\alpha}_{Q} \lambda_{Q} tr(Q\sigma)$

\n- For any
$$
\overline{O} = \sum_{Q} \overline{\alpha}_{Q} Q
$$
, $\text{tr}(\overline{O}P(\sigma)) = \sum_{Q} \overline{\alpha}_{Q} \lambda_{Q} \text{tr}(Q\sigma)$.
\n- Compare with $\text{tr}(O\sigma) = \sum_{Q} \alpha_{Q} \text{tr}(Q\sigma)$, simply set $\overline{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.
\n

.

\n- For any
$$
\overline{O} = \sum_{Q} \overline{\alpha}_{Q} Q
$$
, $\text{tr}(\overline{O}P(\sigma)) = \sum_{Q} \overline{\alpha}_{Q} \lambda_{Q} \text{tr}(Q\sigma)$.
\n- Compare with $\text{tr}(O\sigma) = \sum_{Q} \alpha_{Q} \text{tr}(Q\sigma)$, simply set $\overline{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.
\n

$$
\sum_{Q:|Q|\leq k}\frac{\alpha_Q}{\lambda_Q}\text{tr}\big(Q\mathcal{P}(\sigma)\big)=\text{tr}(O\sigma)
$$

.

\n- For any
$$
\overline{O} = \sum_{Q} \overline{\alpha}_{Q} Q
$$
, $\text{tr}(\overline{O} \mathcal{P}(\sigma)) = \sum_{Q} \overline{\alpha}_{Q} \lambda_{Q} \text{tr}(Q \sigma)$.
\n- Compare with $\text{tr}(O \sigma) = \sum_{Q} \alpha_{Q} \text{tr}(Q \sigma)$, simply set $\overline{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.
\n

$$
\sum_{Q:|Q|\leq k}\frac{\alpha_Q}{\lambda_Q}\text{tr}\big(Q\mathcal{P}(\sigma)\big)=\text{tr}(O\sigma)
$$

.

$$
\sum_{Q: |Q| \leq k} \frac{\alpha_Q}{\hat{\lambda}_Q} \widehat{tr}\big(Q\mathcal{P}(\sigma)\big)
$$

Algorithm for information recovery

- 1. Prepare N random n-fold product Pauli eigenstates $\{\rho_i = \otimes_i |s_{ij}\rangle \langle s_{ij}| \}.$
- 2. Apply the unknown channel P on the N random states and perform random Pauli measurements on each qubit, obtaining data $\{\otimes_j|t_{ij}\rangle\! \langle t_{ij}|\}.$
- 3. For each n-qubit Pauli operator Q with $|Q| \leq k$, compute $\hat{\lambda}_Q$.

Learning

4. For
$$
O = \sum_{Q:|Q| \leq k} \alpha_Q Q
$$
, let $\tilde{\alpha}_Q = \alpha_Q / \lambda_Q$ for $|Q| \leq k$.

Post-processing

- 5. Use classical shadows to estimate $tr(QP(\sigma))$ for $|Q| \leq k$.
- 6. Construct estimator for $tr(O\sigma)$ as

$$
f(\mathcal{P}(\sigma),0)=\sum_{Q:|Q|\leq k}\tilde{\alpha}_Q\;\widehat{tr}\big(Q\mathcal{P}(\sigma)\big)
$$

• Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_o

 $N_1 = O(\log(n^k)/\epsilon_1^2)$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_o

 $N_1 = O(\log(n^k)/\epsilon_1^2)$

• ϵ_2 : accuracy of estimating each $tr(QP(\sigma))$

 $N_2 = \mathcal{O}(\log(n^k)/\epsilon_2^2)$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_o

$$
N_1 = \mathcal{O}(\log\left(n^k\right)/\epsilon_1^2) \qquad \epsilon_1 = C\lambda_{min}^{(k)}\epsilon
$$

• ϵ_2 : accuracy of estimating each $tr(QP(\sigma))$

$$
N_2 = \mathcal{O}(\log(n^k)/\epsilon_2^2) \qquad \epsilon_2 = \mathcal{O}(\epsilon(1-\epsilon))
$$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_o

$$
N_1 = \mathcal{O}(\log(n^k) / \epsilon_1^2) \qquad \epsilon_1 = C \lambda_{min}^{(k)} \epsilon
$$

• ϵ_2 : accuracy of estimating each $tr(QP(\sigma))$

$$
\mathcal{O}(\log(n)/\epsilon^2)
$$

$$
N_2 = \mathcal{O}(\log(n^k)/\epsilon_2^2) \qquad \epsilon_2 = \mathcal{O}(\epsilon(1-\epsilon))
$$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_o

$$
N_1 = \mathcal{O}(\log(n^k) / \epsilon_1^2) \qquad \epsilon_1 = \mathcal{C} \lambda_{min}^{(k)} \epsilon
$$

• ϵ_2 : accuracy of estimating each $tr(QP(\sigma))$ $N_2 = \mathcal{O}(\log(n^k)/\epsilon_2^2)$ $\epsilon_2 = \mathcal{O}(\epsilon(1-\epsilon))$

$$
\mathcal{O}(\log(n)/\epsilon^2)
$$

Computational complexity: $\frac{k \log(n)}{\epsilon^2}$

Numerical experiments

- Two-qubit product Pauli channel with p_I around 0.75
- Observable is a Heisenberg-typed Hamiltonian: $0=\sum_{j=1}^{n-1}\Bigl(J_x\sigma_j^x\sigma_{j+1}^x+J_y\sigma_j^y\sigma_{j+1}^y+J_z\sigma_j^z\sigma_{j+1}^z+ h\sigma_j^z\Bigr)$
- To see how much our algorithm improves estimation, for 500 random states, $\{\sigma_1, ..., \sigma_{500}\}\$ subject them to noise. We compute

MAE with no
post-processing
$$
=
$$
 $\frac{1}{500} \sum_{i=1}^{500} |tr(\theta \mathcal{P}(\sigma_i)) - tr(\theta \sigma_i)|$

MAE with
post-processing
$$
=
$$
 $\frac{1}{500} \sum_{i=1}^{500} |f(\mathcal{P}(\sigma_i), 0) - tr(O\sigma_i)|$

• This allows us to compute the ratio between the two MAEs

 $r =$ MAE with post-processing MAE with no post−processing

• We repeat this 10 times for N ranging from 10,000 to 200,000

As number of samples increases, more precise classical Information we are extracting, accuracy improves with $^{\circ}$ **samples.**

• Mitigate Pauli errors in Clifford circuit, consisting of H , S , $CNOT$ gates.

- Mitigate Pauli errors in Clifford circuit, consisting of H , S , $CNOT$ gates.
	- The ideal circuit is C and the noisy circuit is \widetilde{C} , assuming that Pauli noise after each type of gate is the same.

- Mitigate Pauli errors in Clifford circuit, consisting of H , S , $CNOT$ gates.
	- The ideal circuit is C and the noisy circuit is \widetilde{C} , assuming that Pauli noise after each type of gate is the same.
	- The goal is to obtain the information $tr(DC(\sigma))$ for some observable O.
- Method:
	- Learn eigenvalues of the three noise channels

- Mitigate Pauli errors in Clifford circuit, consisting of H , S , $CNOT$ gates.
	- The ideal circuit is C and the noisy circuit is \widetilde{C} , assuming that Pauli noise after each type of gate is the same.
	- The goal is to obtain the information $tr(DC(\sigma))$ for some observable O.
- Method:
	- Learn eigenvalues of the three noise channels

• Each α_o is scaled by product of eigenvalues

• Can the algorithm work for other types of channel while remain $\mathcal{O}(poly(n))$?

- Can the algorithm work for other types of channel while remain $\mathcal{O}(poly(n))$?
- Sufficient condition:

```
\mathcal{N}^{\dagger} is weight contracting, i.e. \left|\mathcal{N}^{\dagger}(Q)\right|\leq\left|Q\right|
```
- Can the algorithm work for other types of channel while remain $O(poly(n))$?
- Sufficient condition:

```
\mathcal{N}^{\dagger} is weight contracting, i.e. \left|\mathcal{N}^{\dagger}(Q)\right|\leq\left|Q\right|
```
- Updated algorithm for weight contracting channel
- Channel access $\mathcal{O}(n^{2k}\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $\mathcal{O}\big(n^{4k}\log(n)/\epsilon^2\big)$

Conclusion

- Main results:
	- Scalable algorithm for information recovery from Pauli noise for local observable
	- $\mathcal{O}(\log(n))$ sample complexity, $\mathcal{O}(n^k \log(n))$ time complexity
	- Application in Clifford circuit error mitigation
	- Extension to weight contracting channel
- Questions
	- Complete characterisation of weight contracting channel
	- What other groups of observables can the algorithm be applied to

Conclusion

- Main results:
	- Scalable algorithm for information recovery from Pauli noise for local observable
	- $\mathcal{O}(\log(n))$ sample complexity, $\mathcal{O}(n^k \log(n))$ time complexity
	- Application in Clifford circuit error mitigation
	- Extension to weight contracting channel
- Questions
	- Complete characterisation of weight contracting channel
	- What other groups of observables can the algorithm be applied to

Thank you for listening

arXiv: 2305.04148