Efficient information recovery from Pauli noise via classical shadow

Yifei Chen¹, Zhan Yu^{1,2}, Chenghong Zhu^{1,3}, and Xin Wang^{1,3}

1:Baidu Research 2:National University of Singapore 3:HKUST (Guangzhou)

arXiv: 2305.04148

Shadow Information

- Results we usually want from quantum computing are still **classical information**
- Shadow information is the expectation value of some chosen observable: $Tr[O\sigma]$

Shadow Information

- Results we usually want from quantum computing are still **classical information**
- Shadow information is the expectation value of some chosen observable: $Tr[O\sigma]$

• Shadow information is the target of many quantum algorithms

Shadow Information

- Results we usually want from quantum computing are still classical information
- Shadow information is the expectation value of some chosen observable: $Tr[O\sigma]$

- Shadow information is the target of many quantum algorithms
- Estimation of the information $Tr[O\sigma]$ is obtained via making **measurements** with the corresponding observable O and post-processing.

Pauli noise

• One of the most standard theoretical models for quantum noise in the study of quantum error correction and mitigation is Pauli noise.

Pauli noise Kraus representation:

$$\mathcal{P}(\sigma) = p_I \sigma + p_x X \sigma X + p_y Y \sigma Y + p_z Z \sigma Z,$$

where X, Y, Z are Pauli matrices and $p_I + p_x + p_y + p_z = 1$.

Pauli noise

• One of the most standard theoretical models for quantum noise in the study of quantum error correction and mitigation is Pauli noise.

Pauli noise Kraus representation:

$$\mathcal{P}(\sigma) = p_I \sigma + p_x X \sigma X + p_y Y \sigma Y + p_z Z \sigma Z,$$

where X, Y, Z are Pauli matrices and $p_I + p_x + p_y + p_z = 1$.

• Pauli twirling can be applied to converts any noise channel to a Pauli channel

Problem of recovering from Pauli noise

• Given access to an unknown Pauli channel \mathcal{P} and a noisy state $\mathcal{P}(\sigma)$.

Problem of recovering from Pauli noise

- Given access to an unknown Pauli channel \mathcal{P} and a noisy state $\mathcal{P}(\sigma)$.
- For a known k-local observable 0, ||0|| = 1, we want a function $f(\mathcal{P}(\sigma), 0)$ that can predict the ideal value of $tr(0\sigma)$ up to accuracy ϵ , i.e.

 $|f(\mathcal{P}(\sigma), 0) - tr(0\sigma)| \le \epsilon$

Known method

- Probabilistic Error Cancellation
 - Given description of the channel \mathcal{P} , find the map \mathcal{D} such that $tr(O \mathcal{D} \circ \mathcal{P}(\sigma)) = tr(O\sigma)$.
 - \mathcal{D} is not CPTP but can be written as a linear combination of CPTP maps.
 - Simulate action of $\mathcal D$ by probabilistic sampling.

Zhao, Xuanqiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.

Known method

- Probabilistic Error Cancellation
 - Given description of the channel \mathcal{P} , find the map \mathcal{D} such that $tr(O \mathcal{D} \circ \mathcal{P}(\sigma)) = tr(O\sigma)$.
 - \mathcal{D} is not CPTP but can be written as a linear combination of CPTP maps.
 - Simulate action of $\mathcal D$ by probabilistic sampling.
- Description of the channel required
 - Tomography computational inefficient and still an approximation
 - Typically requires number of copies exponentially in number of qubits

Zhao, Xuanqiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.

Known method

- Probabilistic Error Cancellation
 - Given description of the channel \mathcal{P} , find the map \mathcal{D} such that $tr(O \mathcal{D} \circ \mathcal{P}(\sigma)) = tr(O\sigma)$.
 - \mathcal{D} is not CPTP but can be written as a linear combination of CPTP maps.
 - Simulate action of $\mathcal D$ by probabilistic sampling.
- Description of the channel required
 - Tomography computational inefficient and still an approximation
 - Typically requires number of copies exponentially in number of qubits
- Implementation of arbitrary CPTP map required

Main result

• Efficient algorithm for information recovery from Pauli noise for local observable

Main result

- Efficient algorithm for information recovery from Pauli noise for local observable
- Channel access $\mathcal{O}(\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $O(n^k \log(n) / \epsilon^2)$

Main result

- Efficient algorithm for information recovery from Pauli noise for local observable
- Channel access $\mathcal{O}(\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $O(n^k \log(n) / \epsilon^2)$

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

 $\hat{\sigma} = \bigotimes_{i} (3U_{i}^{\dagger} | b_{i} \rangle \langle b_{i} | U_{i} - \mathbb{I}) = \bigotimes_{i} (3 | t_{i} \rangle \langle t_{i} | - \mathbb{I})$

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Classical shadow

• Used to predict $tr(O\sigma)$ for a set of O simultaneously

Repeated for a few times

 $\hat{\sigma} = \bigotimes_i (3U_i^{\dagger} | b_i \rangle \langle b_i | U_i - \mathbb{I}) = \bigotimes_i (3|t_i \rangle \langle t_i | -\mathbb{I})$

Can estimate shadow information for M k-local observables to accuracy ϵ with $\mathcal{O}(\log(M)/\epsilon^2)$

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature Physics 16.10 (2020): 1050-1057.

Learning the Pauli channel

- Observation 1: $tr(\mathcal{OP}(\sigma)) = tr(\mathcal{P}^{\dagger}(\mathcal{O})\sigma)$, where \mathcal{P}^{\dagger} is the adjoint map of \mathcal{P} .
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$\mathcal{P}^{\dagger}(Q) = \lambda_Q \mathbf{Q},$$

Learning the Pauli channel

- Observation 1: $tr(\mathcal{OP}(\sigma)) = tr(\mathcal{P}^{\dagger}(\mathcal{O})\sigma)$, where \mathcal{P}^{\dagger} is the adjoint map of \mathcal{P} .
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$\mathcal{P}^{\dagger}(Q) = \lambda_Q \mathbf{Q},$$

• How can we estimate λ_Q ?

For any Pauli operator Q, we have that

$$\mathbb{E}_{\rho \sim \mathcal{D}^0} tr(Q\mathcal{P}(\rho)) tr(Q\rho) = \left(\frac{1}{3}\right)^{|Q|} \lambda_Q$$

where \mathcal{D}^0 is the uniform distribution over product Pauli eigenstates.

Learning the Pauli channel

- Observation 1: $tr(\mathcal{OP}(\sigma)) = tr(\mathcal{P}^{\dagger}(\mathcal{O})\sigma)$, where \mathcal{P}^{\dagger} is the adjoint map of \mathcal{P} .
- Observation 2: Pauli operators are eigenoperators of \mathcal{P}^{\dagger} , i.e.,

$$\mathcal{P}^{\dagger}(Q) = \lambda_Q \mathbf{Q},$$

• How can we estimate λ_Q ? For any Pauli operator Q, we have that

$$\mathbb{E}_{\rho \sim \mathcal{D}^0} tr(Q\mathcal{P}(\rho)) tr(Q\rho) = \left(\frac{1}{3}\right)^{|Q|} \lambda_Q$$

where \mathcal{D}^0 is the uniform distribution over product Pauli eigenstates.

$$\hat{\lambda}_Q = 3^{|Q|} \cdot \frac{1}{N} \sum_{i=1}^N \prod_{j=1}^n tr\left(Q_j(3|t_{ij}\rangle\langle t_{ij}| - \mathbb{I})\right) tr(Q_j|s_{ij}\rangle\langle s_{ij}|)$$

• For any
$$\overleftarrow{O} = \sum_{Q} \overleftarrow{\alpha}_{Q} Q$$
,
 $\operatorname{tr} \left(\overleftarrow{O} \mathcal{P}(\sigma) \right) = \sum_{Q} \overleftarrow{\alpha}_{Q} \lambda_{Q} \operatorname{tr}(Q\sigma)$

• For any
$$\overleftarrow{O} = \sum_{Q} \overleftarrow{\alpha}_{Q} Q$$
,
 $\operatorname{tr} \left(\overleftarrow{O} \mathcal{P}(\sigma) \right) = \sum_{Q} \overleftarrow{\alpha}_{Q} \lambda_{Q} \operatorname{tr}(Q\sigma)$
• Compare with $\operatorname{tr}(O\sigma) = \sum_{Q} \alpha_{Q} \operatorname{tr}(Q\sigma)$, simply set $\overleftarrow{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.

• For any
$$\overleftarrow{O} = \sum_{Q} \overleftarrow{\alpha}_{Q} Q$$
,
 $\operatorname{tr} \left(\overleftarrow{O} \mathcal{P}(\sigma) \right) = \sum_{Q} \overleftarrow{\alpha}_{Q} \lambda_{Q} \operatorname{tr}(Q\sigma)$
• Compare with $\operatorname{tr}(O\sigma) = \sum_{Q} \alpha_{Q} \operatorname{tr}(Q\sigma)$, simply set $\overleftarrow{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.

$$\sum_{Q:|Q| \le k} \frac{\alpha_Q}{\lambda_Q} tr(Q\mathcal{P}(\sigma)) = tr(O\sigma)$$

• For any
$$\overleftarrow{O} = \sum_{Q} \overleftarrow{\alpha}_{Q} Q$$
,
 $\operatorname{tr} \left(\overleftarrow{O} \mathcal{P}(\sigma) \right) = \sum_{Q} \overleftarrow{\alpha}_{Q} \lambda_{Q} \operatorname{tr}(Q\sigma)$
• Compare with $\operatorname{tr}(O\sigma) = \sum_{Q} \alpha_{Q} \operatorname{tr}(Q\sigma)$, simply set $\overleftarrow{\alpha}_{Q} = \frac{\alpha_{Q}}{\lambda_{Q}}$.

$$\sum_{Q:|Q| \le k} \frac{\alpha_Q}{\lambda_Q} tr(Q\mathcal{P}(\sigma)) = tr(O\sigma)$$

$$\sum_{Q:|Q|\leq k} \frac{\alpha_Q}{\hat{\lambda}_Q} \widehat{tr}(Q\mathcal{P}(\sigma))$$

Algorithm for information recovery

- 1. Prepare N random n-fold product Pauli eigenstates $\{\rho_i = \bigotimes_j |s_{ij}\rangle\langle s_{ij}|\}$.
- 2. Apply the unknown channel \mathcal{P} on the N random states and perform random Pauli measurements on each qubit, obtaining data $\{\bigotimes_j |t_{ij}\rangle\langle t_{ij}|\}$.
- 3. For each n-qubit Pauli operator Q with $|Q| \leq k$, compute $\hat{\lambda}_Q$.

4. For
$$O = \sum_{Q:|Q| \le k} \alpha_Q Q$$
, let $\dot{\alpha}_Q = \alpha_Q / \hat{\lambda}_Q$ for $|Q| \le k$.

Post-processing

Learning

- 5. Use classical shadows to estimate $tr(Q\mathcal{P}(\sigma))$ for $|Q| \leq k$.
- 6. Construct estimator for $tr(0\sigma)$ as

$$f(\mathcal{P}(\sigma), 0) = \sum_{Q:|Q| \le k} \tilde{\alpha}_Q \, \widehat{tr}(Q\mathcal{P}(\sigma))$$

• Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_Q

 $N_1 = \mathcal{O}(\log(n^k) / \epsilon_1^2)$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_Q

 $N_1 = \mathcal{O}(\log(n^k) \, / \epsilon_1^2)$

• ϵ_2 : accuracy of estimating each $tr(Q\mathcal{P}(\sigma))$

 $N_2 = \mathcal{O}(\log(n^k) / \epsilon_2^2)$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_Q

$$N_1 = \mathcal{O}(\log \left(n^k\right) / \epsilon_1^2) \qquad \epsilon_1 = C \lambda_{min}^{(k)} \epsilon$$

• ϵ_2 : accuracy of estimating each $tr(Q\mathcal{P}(\sigma))$

$$N_2 = \mathcal{O}(\log(n^k) / \epsilon_2^2) \qquad \epsilon_2 = \mathcal{O}(\epsilon(1 - \epsilon))$$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_Q

$$N_1 = \mathcal{O}(\log(n^k) / \epsilon_1^2) \qquad \epsilon_1 = C \lambda_{min}^{(k)} \epsilon_1$$

• ϵ_2 : accuracy of estimating each $tr(Q\mathcal{P}(\sigma))$ $N_2 = O(\log(n^k) / \epsilon_2^2)$ $\epsilon_2 = O(\epsilon(1 - \epsilon))$

$$\mathcal{O}(\log(n)/\epsilon^2)$$

- Three quantities to consider: number of channel used (N_1) , number of noisy states used (N_2) and total computation time
- ϵ_1 : accuracy of estimating each λ_Q

$$N_1 = \mathcal{O}(\log(n^k) / \epsilon_1^2) \qquad \epsilon_1 = C \lambda_{min}^{(k)} \epsilon_1$$

• ϵ_2 : accuracy of estimating each $tr(Q\mathcal{P}(\sigma))$ $N_2 = \mathcal{O}(\log(n^k) / \epsilon_2^2)$ $\epsilon_2 = \mathcal{O}(\epsilon(1 - \epsilon))$

$$\mathcal{O}(\log(n)/\epsilon^2)$$

Computational complexity: $O(n^k \log(n) / \epsilon^2)$

Numerical experiments

- Two-qubit product Pauli channel with p_I around 0.75
- Observable is a Heisenberg-typed Hamiltonian: $O = \sum_{j=1}^{n-1} \left(J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z + h \sigma_j^z \right)$
- To see how much our algorithm improves estimation, for 500 random states, $\{\sigma_1, \dots, \sigma_{500}\}$ subject them to noise. We compute

MAE with no
post-processing
$$= \frac{1}{500} \sum_{i=1}^{500} |tr(O\mathcal{P}(\sigma_i)) - tr(O\sigma_i)|$$

MAE with post-processing
$$= \frac{1}{500} \sum_{i=1}^{500} |f(\mathcal{P}(\sigma_i), 0) - tr(O\sigma_i)|$$

This allows us to compute the ratio between the two MAEs

 $r = \frac{\text{MAE with post-processing}}{\text{MAE with no post-processing}}$

• We repeat this 10 times for N ranging from 10,000 to 200,000

As number of samples increases, more precise classical Information we are extracting, accuracy improves with samples.

• Mitigate Pauli errors in Clifford circuit, consisting of *H*, *S*, *CNOT* gates.

- Mitigate Pauli errors in Clifford circuit, consisting of *H*, *S*, *CNOT* gates.
 - The ideal circuit is C and the noisy circuit is \widetilde{C} , assuming that Pauli noise after each type of gate is the same.

- Mitigate Pauli errors in Clifford circuit, consisting of *H*, *S*, *CNOT* gates.

 - The goal is to obtain the information $tr(\mathcal{OC}(\sigma))$ for some observable \mathcal{O} .
- Method:
 - Learn eigenvalues of the three noise channels

- Mitigate Pauli errors in Clifford circuit, consisting of *H*, *S*, *CNOT* gates.
 - The ideal circuit is $\mathcal C$ and the noisy circuit is $\widetilde{\mathcal C}$, assuming that Pauli noise after each type of gate is the same.
 - The goal is to obtain the information $tr(\mathcal{OC}(\sigma))$ for some observable \mathcal{O} .
- Method:
 - Learn eigenvalues of the three noise channels

• Each α_Q is scaled by product of eigenvalues

• Can the algorithm work for other types of channel while remain O(poly(n))?

- Can the algorithm work for other types of channel while remain O(poly(n))?
- Sufficient condition:

```
\mathcal{N}^{\dagger} is weight contracting, i.e. \left|\mathcal{N}^{\dagger}(Q)\right| \leq |Q|
```

- Can the algorithm work for other types of channel while remain O(poly(n))?
- Sufficient condition:

```
\mathcal{N}^{\dagger} is weight contracting, i.e. \left|\mathcal{N}^{\dagger}(Q)\right| \leq |Q|
```

- Updated algorithm for weight contracting channel
- Channel access $\mathcal{O}(n^{2k}\log(n)/\epsilon^2)$
- State copies $\mathcal{O}(\log(n)/\epsilon^2)$
- Computation time $O(n^{4k} \log(n) / \epsilon^2)$

Conclusion

- Main results:
 - Scalable algorithm for information recovery from Pauli noise for local observable
 - $\mathcal{O}(\log(n))$ sample complexity, $\mathcal{O}(n^k \log(n))$ time complexity
 - Application in Clifford circuit error mitigation
 - Extension to weight contracting channel
- Questions
 - Complete characterisation of weight contracting channel
 - What other groups of observables can the algorithm be applied to

Conclusion

- Main results:
 - Scalable algorithm for information recovery from Pauli noise for local observable
 - $\mathcal{O}(\log(n))$ sample complexity, $\mathcal{O}(n^k \log(n))$ time complexity
 - Application in Clifford circuit error mitigation
 - Extension to weight contracting channel
- Questions
 - Complete characterisation of weight contracting channel
 - What other groups of observables can the algorithm be applied to

Thank you for listening

arXiv: 2305.04148