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Shadow Information

• Results we usually want from quantum computing are still classical information

• Shadow information is the expectation value of some chosen observable: Tr[𝑂𝜎]
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Shadow Information

• Results we usually want from quantum computing are still classical information

• Shadow information is the expectation value of some chosen observable: Tr[𝑂𝜎]

• Shadow information is the target of many quantum algorithms

• Estimation of the information Tr[𝑂𝜎] is obtained via making measurements with 
the corresponding observable O and post-processing.
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Pauli noise

• One of the most standard theoretical models for quantum noise in the study of 
quantum error correction and mitigation is Pauli noise.

Pauli noise Kraus representation:

𝒫 𝜎 = 𝑝𝐼𝜎 + 𝑝𝑥𝑋𝜎𝑋 + 𝑝𝑦𝑌𝜎𝑌 + 𝑝𝑧𝑍𝜎𝑍,

where 𝑋, 𝑌, 𝑍 are Pauli matrices and 𝑝𝐼 + 𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧 = 1.
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• Pauli twirling can be applied to converts any noise channel to a Pauli channel
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• Given access to an unknown Pauli channel 𝒫 and a noisy state 𝒫 𝜎 . 

• For a known k-local observable 𝑂, 𝑂 = 1, we want a function 𝑓 𝒫 𝜎 , 𝑂 that 

can predict the ideal value of 𝑡𝑟 𝑂𝜎 up to accuracy 𝜖, i.e. 

𝑓 𝒫 𝜎 ,𝑂 − 𝑡𝑟(𝑂𝜎) ≤ 𝜖



Known method

Zhao, Xuanqiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.

𝒩(𝜎) 𝑠𝑐𝑡𝑖𝒟 1 𝑠𝑐𝑡𝑖
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Post 
Processing

Tr[𝑂𝜎]

• Probabilistic Error Cancellation
• Given description of the channel 𝒫, find the map 𝒟 such that 𝑡𝑟 𝑂 𝒟 ∘ 𝒫 𝜎 = 𝑡𝑟 𝑂𝜎 .

• 𝒟 is not CPTP but can be written as a linear combination of CPTP maps.
• Simulate action of 𝒟 by probabilistic sampling.
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Post 
Processing

Tr[𝑂𝜎]

• Description of the channel required
• Tomography – computational inefficient and still an 

approximation
• Typically requires number of copies exponentially in 

number of qubits

• Implementation of arbitrary CPTP map required

• Probabilistic Error Cancellation
• Given description of the channel 𝒫, find the map 𝒟 such that 𝑡𝑟 𝑂 𝒟 ∘ 𝒫 𝜎 = 𝑡𝑟 𝑂𝜎 .
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Classical shadow
• Used to predict 𝑡𝑟(𝑂𝜎) for a set of 𝑂 simultaneously
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Can estimate shadow information for 𝑀 𝑘-local observables 
to accuracy 𝜖 with 𝓞(𝐥𝐨𝐠(𝑴)/𝝐𝟐)
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Algorithm for information recovery

1. Prepare N random n-fold product Pauli eigenstates 𝜌𝑖 =⊗𝑗 𝑠𝑖𝑗 𝑠𝑖𝑗 }.

2. Apply the unknown channel 𝒫 on the N random states and perform random 

Pauli measurements on each qubit, obtaining data  ⊗𝑗 𝑡𝑖𝑗 𝑡𝑖𝑗 }.

3. For each n-qubit Pauli operator 𝑄 with 𝑄 ≤ 𝑘, compute መ𝜆𝑄.

4. For 𝑂 = σ𝑄: 𝑄 ≤𝑘 𝛼𝑄𝑄, let ശ𝛼𝑄 = 𝛼𝑄/ መ𝜆𝑄 for 𝑄 ≤ 𝑘.

5. Use classical shadows to estimate 𝑡𝑟 𝑄𝒫 𝜎 for 𝑄 ≤ 𝑘.

6. Construct estimator for 𝑡𝑟 𝑂𝜎 as

𝑓 𝒫 𝜎 , 𝑂 = ෍

𝑄: 𝑄 ≤𝑘

ശ𝛼𝑄 ෝ𝑡𝑟 𝑄𝒫 𝜎

Learning

Post-processing
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Numerical experiments

• Two-qubit product Pauli channel with 𝑝𝐼 around 0.75

• Observable is a Heisenberg-typed Hamiltonian: 𝑂 = σ𝑗=1
𝑛−1 𝐽𝑥𝜎𝑗

𝑥𝜎𝑗+1
𝑥 + 𝐽𝑦𝜎𝑗

𝑦
𝜎𝑗+1
𝑦

+ 𝐽𝑧𝜎𝑗
𝑧𝜎𝑗+1

𝑧 + ℎ𝜎𝑗
𝑧

• To see how much our algorithm improves estimation, for 500 random states, {𝜎1, … , 𝜎500} subject 
them to noise.  We compute

• This allows us to compute the ratio between the two MAEs

• We repeat this 10 times for N ranging from 10,000 to 200,000

As number of samples increases, more precise classical

Information we are extracting, accuracy improves with more

samples.

MAE with no 
post-processing

=
1

500
෍

𝑖=1

500

|𝑡𝑟 𝑂𝒫 𝜎𝑖 − 𝑡𝑟 𝑂𝜎𝑖 |
MAE with 
post-processing

=
1

500
෍

𝑖=1

500

|𝑓 𝒫 𝜎𝑖 , 𝑂 − 𝑡𝑟 𝑂𝜎𝑖 |

𝑟 =
MAE with post−processing

MAE with no post−processing
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• The goal is to obtain the information tr 𝑂𝒞 𝜎 for some observable 𝑂.

• Method:
• Learn eigenvalues of the three noise channels

• Each 𝛼𝑄 is scaled by product of eigenvalues
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• Questions
• Complete characterisation of weight contracting channel

• What other groups of observables can the algorithm be applied to
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• What other groups of observables can the algorithm be applied to

Thank you for listening
arXiv: 2305.04148
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