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Shadow Information

* Results we usually want from quantum computing are still classical information
* Shadow information is the expectation value of some chosen observable: Tr[Oad]
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* Shadow information is the target of many quantum algorithms

* Estimation of the information Tr[Oc] is obtained via making measurements with
the corresponding observable O and post-processing.



Pauli noise

* One of the most standard theoretical models for quantum noise in the study of
guantum error correction and mitigation is Pauli noise.
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* Pauli twirling can be applied to converts any noise channel to a Pauli channel



Problem of recovering from Pauli noise

* Given access to an unknown Pauli channel P and a noisy state P (o).



Problem of recovering from Pauli noise

* Given access to an unknown Pauli channel P and a noisy state P (o).

* For a known k-local observable O, ||0|| = 1, we want a function f(P (o), 0) that

can predict the ideal value of tr(Oc¢) up to accuracy €, i.e.

[f(P(0),0) —tr(0o)| < €



Known method

* Probabilistic Error Cancellation

* Given description of the channel P, find the map D such that tr(O D o iP(a)) = tr(0o).
* D isnot CPTP but can be written as a linear combination of CPTP maps.
* Simulate action of D by probabilistic sampling
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Post = Tr[00]
N (0)—D® 75 Processing
N(o)—D®) o

Zhao, Xuangiang, et al. "Information recoverability of noisy quantum states." Quantum 7 (2023): 978.
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* Given description of the channel P, find the map D such that tr(O D o iP(a)) = tr(0o).
* D isnot CPTP but can be written as a linear combination of CPTP maps.
* Simulate action of D by probabilistic sampling

* Description of the channel required
 Tomography — computational inefficient and still an
approximation

* Typically requires number of copies exponentially in N (o)—p®F—
number of qubits N (o)—p@ = o
* Implementation of arbitrary CPTP map required Post = Tr[Oo
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Main result

* Efficient algorithm for information recovery from Pauli noise for local observable
 Channel access O(log(n)/€?)

* State copies O(log(n)/e?)

« Computation time O(nk log(n) /62)
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Classical shadow
* Used to predict tr(0Oo) for a set of O simultaneously
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Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few
measurements." Nature Physics 16.10 (2020): 1050-1057.
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* Used to predict tr(0Oo) for a set of O simultaneously
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Can estimate shadow information for M k-local observables
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measurements." Nature Physics 16.10 (2020): 1050-1057.



Learning the Pauli channel

* Observation 1: tr(O?(a)) = tr(PT(O)a), where PT is the adjoint map of P.

« Observation 2: Pauli operators are eigenoperators of PT, i.e.,
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Recover shadow information
e Forany 0 = 20 @00,
tr (0P(0)) = ) doAqtr(@o)

Q
* Compare with tr(0o) = Yo aptr(Qo), simply set a, = Z—Q.
Q
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Algorithm for information recovery

1. Prepare N random n-fold product Pauli eigenstates {pi =Q; |Sij)<Sij|}.

2. Apply the unknown channel P on the N random states and perform random
Pauli measurements on each qubit, obtaining data {(X)j |tij)(tij|}.

3. For each n-qubit Pauli operator Q with |Q| < k, compute /'ALQ. Learning

4. ForO =Y, a,0,let &, = ap /A, for |Q| < k.
ZQ'|Q|SR QQ ¢ Q/ ¢ ¢ Post-processing

5. Use classical shadows to estimate tr(Q?(a)) for |Q| < k.
6. Construct estimator for tr(0Oo) as

FP@,00= ) & (QP(0)

Q:lQlsk
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Complexity of the algorithm

* Three quantities to consider: number of channel used (N;), number of noisy

states used (IV,) and total computation time

* €;:accuracy of estimating each 4,
Ny = O0(log(n*) /e) & =ca¥) e

min
* €,: accuracy of estimating each tr(QP (o))

N, = O(log(n¥) /e2) €2 =0(e(1—¢€))

Computational complexity:

O (log(n) /%)

0(n*log(n) /€?)



Numerical experiments

Two-qubit product Pauli channel with p; around 0.75
Observable is a Heisenberg-typed Hamiltonian: 0 = }7-

them to noise. We compute

MAE with no
post-processing

T =

500

MAE with post—processing

MAE with no post—processing

We repeat this 10 times for N ranging from 10,000 to 200,000

1
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post-processing ~ 500

This allows us to compute the ratio between the two MAEs

0.30F

Average Ratio r

0.15F

As number of samples increases, more precise classical

Information we are extracting, accuracy improves with
samples.
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Application in mitigating Pauli errors in Clifford circuits

* Mitigate Pauli errors in Clifford circuit, consisting of H, S, CNOT gates.

e The ideal circuit is C and the noisy circuit is C , assuming that Pauli noise after each type of
gate is the same.

 The goal is to obtain the information tr(OC’(J)) for some observable O.

e Method:

e Learn eigenvalues of the three noise channels
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* Each ay is scaled by product of eigenvalues
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Extensions of the algorithm

* Can the algorithm work for other types of channel while remain O(poly(n))?

Sufficient condition:
N1 is weight contracting, i.e. |[VT(Q)| < |Q]

 Updated algorithm for weight contracting channel
e Channel access O(n**log(n)/€?)

* State copies O (log(n)/e?)

e Computation time O(n‘”‘ log(n) /62)



Conclusion

* Main results:

 Scalable algorithm for information recovery from Pauli noise for local
observable

* 0(log(n)) sample complexity, O(n* log(n)) time complexity
* Application in Clifford circuit error mitigation
* Extension to weight contracting channel

* Questions
* Complete characterisation of weight contracting channel
* What other groups of observables can the algorithm be applied to



Conclusion

* Main results:

 Scalable algorithm for information recovery from Pauli noise for local
observable

* 0(log(n)) sample complexity, O(n* log(n)) time complexity
* Application in Clifford circuit error mitigation
* Extension to weight contracting channel

* Questions
* Complete characterisation of weight contracting channel
* What other groups of observables can the algorithm be applied to

Thank you for listening

arXiv: 2305.04148
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