

Post-variational quantum neural networks

Po-Wei Huang, Patrick Rebentrost arXiv:2307.10560 Nov 22, 2023, QTML, Geneva, Switzerland

Methods in quantum machine learning

Variational quantum algorithms

<u> https://quantum-journal.org/papers/q-2019-10-07-191/</u>

Barren plateaus

Fault tolerant algorithms

https://arxiv.org/abs/1802.08227

Limited application on current hardware

Post-variational strategies

- Convert problem from optimization with quantum circuits to a classical convex optimization problem of combination of quantum circuits.
 - Use quantum computers to compute values from fixed Ansätze/observables and use classical computer to find optimal combination.

From variational to post-variational

Ansatz expansion strategy

5

Ansatz expansion strategy

- Construct gradients and higher-order derivatives with parameter shift rules.
 - Number of measurements required are exponential to the derivative order to be taken.
 - A low order truncation is required but may not be an effective enough estimation.
- Strategies to avoid exponentially small gradients:
 - Initialization of parameters such that Ansatz blocks eval to identity → Avoid formation of 2-designs [GWOB19]

Observable construction strategy

Observable construction strategy

- Build an arbitrary observable using linear combination of Pauli strings.
 - To build a *k*-local Hamiltonian, Pauli strings exponential to *k* is needed.
- Theoretical guarantees with low degree approximations [HCP22]
 - For any distribution over *n*-qubits invariant under single qubit Clifford gate
 - Observable truncated at $k = \left\lceil \log_{1.5} \left(\frac{1}{\epsilon}\right) \right\rceil$ is epsilon close to optimal loss such that

$$\mathbb{E}_{\rho\in\mathcal{D}}\left|\operatorname{tr}(O\rho) - \operatorname{tr}(O^{(k)}\rho)\right|^2 \le (2/3)^k \|O\|^2$$

Observable construction strategy

- Classical shadow tomography [HKP20] estimation
 - Use global random measurement on Pauli basis to estimate local observables
 - Dependency exponential to locality of observables and logarithmic to number of observables

Hybrid strategy

10

Hybrid strategy

Construct gradients plus build an arbitrary observable. ٠

Nature Communications 12 (2021).

Neural network system

Classical optimization

Classical optimization...with errors

Measurements related to total loss

- Given the computed coefficients \tilde{a} from \tilde{Q} constructed from measurements, fix ϵ such that for root mean square error (RMSE) loss $||Q\alpha Y||_2 ||\tilde{Q}\alpha Y||_2| < \epsilon$
- The total number of measurements for post-variational neural networks is

$$\mathbf{O}\left(\frac{m^3d}{\epsilon}\log\frac{md}{\delta}\right)$$

Or, with classical shadows estimation,

$$\mathbf{O}\left(\frac{m^2 p d \max \|O\|_s}{\epsilon} \log \frac{m d}{\delta}\right)$$

Experiment results

	Validation			Testing		
Strategy	Loss	Accuracy	F1	Loss	Accuracy	F1
Ansatz	0.70	0.49	0.57	0.69	0.50	0.66
Observable	0.40	0.83	0.82	0.42	0.82	0.82
Hybrid	0.15	0.94	0.94	0.20	0.91	0.90
Variational [7]	-	0.97	-	-	-	-