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Parameter estimation in open quantum systems

Estimate the unknown parameters that govern the dynamics of a
sensor that is coupled to an environment and it is continuously

monitored
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Parameter estimation in open quantum systems

Estimate the unknown parameters that govern the dynamics of a
sensor that is coupled to an environment and it is continuously

monitored
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mCan we leverage modern deep learning
techniques to improve parameter
estimation?
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mCan we leverage modern deep learning
techniques to improve parameter
estimation?

Parameter estimation by learning quantum correlations in continuous
photon-counting data using neural networks
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We present an inference method utilizing artificial neural networks for parameter estimation of
a quantum probe monitored through a single continuous measurement. Unlike existing approaches
focusing on the diffusive signals generated by continuous weak measurements, our method har-
nesses quantum correlations in discrete photon-counting data characterized by quantum jumps. We
benchmark the precision of this method against Bayesian inference, which is optimal in the sense of
information retrieval. By using numerical experiments on a two-level quantum system, we demon-
strate that our approach can achieve a similar optimal performance as Bayesian inference, while
drastically reducing computational costs. Additionally, the method exhibits robustness against the
presence of imperfections in both measurement and training data. This approach offers a promising
and computationally efficient tool for quantum parameter estimation with photon-counting data,
relevant for applications such as quantum sensing or quantum imaging, as well as robust calibration
tasks in laboratory-based settings.
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A simple model of an open quantum sensor
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A simple model of an open quantum sensor

Continuously monitored
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A simple model of an open quantum sensor

Continuously monitored
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Can we precisely and robustly extract the value of the system’s parameters?
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Bayesian parameter estimation

Use Bayes’ Theorem to compute the probability density function of
the parameters, conditioned on the observed data
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Bayesian Estimation
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The posterior changes as
different data D(t) is observed
The longer time t we observe,
the more precise our prediction



Challenges in Bayesian parameter estimation
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Challenges in Bayesian parameter estimation

=One of the ingredients of Bayesian estimation is the Likelihood:
= This requires a full model of the quantum system

=A model of the quantum system, when available, might require solving
complicated differential equations or finding eigenfunctions of large matrices.

=In many cases these likelihoods can become extremely small (for unlikely
events) and numerical precision becomes an issue
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=One of the ingredients of Bayesian estimation is the Likelihood:
= This requires a full model of the quantum s

=A model of the quantum system, when avai
complicated differential equations or finding

=In many cases these likelihoods can beco
events) and numerical precision becomes an issue

=Another ingredient is the Evidence:

=The evidence (or marginal likelihood) requires an integral over all possible
parameter values

=\When the parameter space is high dimensional, computing this integral is
numerically expensive

=Monte Carlo methods are routinely employed in this case
Q
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Deep learning parameter estimation

Use trained neural networks to output a point estimate of the
parameters, given an observation as input
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Test with 1 parameter
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Test with 1 parameter
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Test with 1 parameter

= Measure how well the “prediction” compares to the “truth” (averaged over many samples)
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Test with 1 parameter

- Measure how well the “prediction” compares to the “truth” (averaged over many samples
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Test with 1 parameter

Measure how well the “prediction” compares to the “truth” (averaged over many samples)
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* The same test trajectories
are used in both cases
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Test with 2 parameters

I
y —— D (A=A

Log scale




Test with 2 parameters
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Test with 2 parameters
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* Plot showing only the deviation on the
parameter A

* Both parameter are estimated together
from the data

» Using ~10K trajectories to gather
statistics on the MSE

« Using neural networks we obtain results
x10000 times faster
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Results from noisy data

What happens when the training data is not “correct™?
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Results from noisy data

What happens when the training data is not “correct™?

« The time delays from photon counting have jitter noise

« The true parameters used in training are mis-calibrated



The time delays from photon counting have jitter noise

Driven-dissipative Open Quantum System
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The time delays from photon counting have jitter noise

Driven-dissipative Open Quantum System

External field T3 T2 71
~ e e
0= (wr, Q) Emitted photons

D

—

Population

=
o

0.01

1

72 73 T4

-l

Noise

O

71 T2 73 T4

000

ulation

Pop




The time delays from photon counting have jitter noise

Driven-dissipative Open Quantum System
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The time delays from photon counting have jitter noise
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The time delays from photon counting have jitter noise
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The time delays from photon counting have jitter noise
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The time delays from photon counting have jitter noise
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The true parameters used in training are mis-calibrated
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The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System

Training Noise

External field 73 T2 T1 2
- e e e m—fp X, DY, ——P X, =y +e€ e ~ N(0,07)
0= (wr, Q) Emitted photons Gy l l y

D



The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System
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The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System
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The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System
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The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System
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The true parameters used in training are mis-calibrated

Driven-dissipative Open Quantum System

External field

I A'AA?
0 = (U.)L, Q)

10V - ..
| ---- Training data

| —e— Neural Network

MSE prediction

1073 4

D

T3

T2 T1
e e e mm—l X, =Y,

Emitted photons

Training Noise

—>

Noise in Training data Ytrain

Xp > Yite€

-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

0.0 0.2 0.4

0.6

0.8 1.0

MSE training data 05

€ ~ /V(O,ayz)
A =027y

Bayesian ideal result in red
Training data is “wrong”:

intrinsic MSE=0'y2

Dashed line is MSE
expected from training data

Using neural networks we
obtain results that are
robust to training noise and
consistent with ideal Bayes
results




Robust and speedy inference with NN

Does not need exact modeling of quantum sensors

Does not need “big data”
Reaches the limits of precision of Bayesian Inference

Deployable to edge devices inside quantum labs
Zenodo and release for reproducibility
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https://zenodo.org/records/8392691
https://zenodo.org/records/8305509

QUANTINUUM




D

Importance of data

Classical vs Quantum data




Importance of data

Classical vs Quantum data
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Classical

Driven-dissipative Open Quantum System
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Neural Network workflow

Training

 Collect “simulated” data using
Qutip

» ~4M trajectories (80-20 split
for train-validation)

* One case for 1D estimation
(fix €2)

» One case for 2D estimation

 Fix trajectories with 48 jumps

* Fix the network architecture (no
hyper-parameter optimization)

* Minimize the Mean Squared
Logarithmic Error (MSLE) with
the Adam optimizer

Q

Test

 Collect “simulated” data using
Qutip
» ~10K trajectories

* These are completely
different from the training set

* Fix trajectories with 48
jumps
* For each true value of the
parameters, compute the Mean
Squared Error (MSE) with the
predicted value

Code on
GitHub

Inference

* If the performance is
satisfactory, save the model
for inference

 The model can be stored in a
very compact form and be
ready for deployment

« Use the model on edge
devices right next the
experimental setup to do
“real time” inference of the
parameters


https://qutip.org/
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https://github.com/CarlosSMWolff/ParamEst-NN
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Neural Network
detalils

Definition of the two different architectures
used in this work:

1. Recurrent Neural Network (RNN)

2. Fully connected Neural Network with
Histogram layer (Hist-Dense) for both
1D and 2D estimation

Example of number of parameters in the
case of the estimation of A for 1D and (A,
Q) for 2D.

Training is done with the Adam optimizer
with default learning rate for 1200 epoch
and batch size of 12800 on TPUs

Recurrent Neural Network (RNN)

Layer Output shape Activation # Parameters
LSTM 17 ReLU 1292
LSTM 17 ReLU 2380
Dense 1 Linear 18
Trainable params. 3,690

Epochs 1200

Hist-Dense

Layer Output shape Activation # Parameters
Histogram 700 - 0
Dense 100 ReLU 70100
Dense 50 ReLU 5050
Dense 30 ReLU 1530
Dense 1 Linear 31
Trainable params. 76,711

Epochs 1200

Hist-Dense 2D

Layer Output shape Activation # Parameters
Histogram 700 - 0
Dense 100 ReLU 70100
Dense 50 ReLU 5050
Dense 30 ReLU 1530
Dense 20 ReLU 620
Dense 10 ReLLU 210
Dense 2 Linear 22

Trainable params. 77,532
Epochs 1200



1F Code on
GitHub
Bias of the estimators in 1D

0.4 -

—o— Bayes (Classical)
—=— Bayes (Quantum)
—e— NN (RNN)

—e— NN (Hist-Dense)

D


https://github.com/CarlosSMWolff/ParamEst-NN
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Code on
GitHub

Generalized (biased) Cramer-Rao bounds
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Code on
GitHub

Deployment to edge devices

—=— Bayes (Quantum)
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—s— NN TensorFlow Lite
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https://github.com/CarlosSMWolff/ParamEst-NN

System Environment Detector

* Metrology with non
Isolated systems

» Metrology of time-varying
signals

* Magnetometry
« Spectroscopy

* Fluorescence
microscopy

* Device characterization

Gammelmark, S. & Mglmer, K. Fisher Information and the Quantum Cramér-Rao
Sensitivity Limit of Continuous Measurements.
Physical Review Letters 112, 170401 (2014)
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Prospects
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Schwartz, O. et al. Superresolution Microscopy with Quantum Emitters. Nano
Letters 13, 5832-5836 (2013).

Israel, Y. et al., Quantum correlation enhanced super-resolution localization
microscopy enabled by a fibre bundle camera. Nature Communications 8, 1-5

(2017).

Tenne, R. et al. Super-resolution enhancement by quantum image scanning
microscopy. Nature Photonics 13, 116122 (2019).

Slide from Carlos Munoz

Fields such as quantum imaging are
already capitalizing on the photonic
correlations for guantum metrology.

A more powerful data analysis based on
the combination of Bayesian inference
and machine learning could boost the
resolution in quantum microscopy and
spectroscopy.



Slide from Carlos Munoz

Lightweight fraining

Well tfrained with less than 10k data points (trajectories)

log10@(MSE-Bayes/MSE-NN)

log10(# trajectories in training)




