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Parameter estimation in open quantum systems 

Estimate the unknown parameters that govern the dynamics of a 
sensor that is coupled to an environment and it is continuously 
monitored

Gammelmark, S. & Mølmer, K. Fisher Information and the Quantum Cramér-Rao Sensitivity Limit of Continuous Measurements.  
Physical Review Letters 112, 170401 (2014)
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• Metrology with non 
isolated systems 

• Metrology of time-
varying signals 

• Magnetometry 
• Spectroscopy 

• Fluorescence 
microscopy 

• Device 
characterization 

• …
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Can we leverage modern deep learning 
techniques to improve parameter 
estimation?
Yes! See our preprint https://arxiv.org/abs/2310.02309  
Project lead by Carlos Sànchez Muñoz at UAM

https://arxiv.org/abs/2310.02309
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A simple model of an open quantum sensor

ωq

Continuously monitored

Can we precisely and robustly extract the value of the system’s parameters? 
  and ⃗θe = {Δ = ωq − ωL Ω}
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Bayesian parameter estimation
Use Bayes’ Theorem to compute the probability density function of 
the parameters, conditioned on the observed data

P( ⃗θ ∣ D) =
P(D ∣ ⃗θ)

P(D)
P0( ⃗θ) =

P(D ∣ ⃗θ)

∫ d ⃗θP(D ∣ ⃗θ)P0( ⃗θ)
P0( ⃗θ)
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Example for 1 parameter

• The posterior changes as 
different data D(t) is observed 

• The longer time t we observe, 
the more precise our prediction



Challenges in Bayesian parameter estimation



▪One of the ingredients of Bayesian estimation is the Likelihood: 
▪This requires a full model of the quantum system 
▪A model of the quantum system, when available, might require solving 
complicated differential equations or finding eigenfunctions of large matrices. 
▪In many cases these likelihoods can become extremely small (for unlikely 
events) and numerical precision becomes an issue
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▪Another ingredient is the Evidence: 
▪The evidence (or marginal likelihood) requires an integral over all possible 
parameter values 
▪When the parameter space is high dimensional, computing this integral is 
numerically expensive 
▪Monte Carlo methods are routinely employed in this case

Challenges in Bayesian parameter estimation

Expensive

Not practical



Deep learning parameter estimation
Use trained neural networks to output a point estimate of the 
parameters, given an observation as input
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Sequence Histogram Counts

RNN: 
LSTM layers

FCNN: 
Dense layers

input = [τ1, …τN] input = [c1, …c400]

output = [θ1, …θn] output = [θ1, …θn]

TensorFlow  
Implementation 

And  
Deployment

https://github.com/CarlosSMWolff/ParamEst-NN
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Classical
Bayes

Test with 1 parameter

• Using data without quantum 
correlations we obtain a 
larger deviation from the 
true parameter value

• Using Bayesian inference on 
data with quantum 
correlations we significantly 
lower the deviation
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are used in both cases
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Test with 1 parameter

Classical
Bayes

NN-RNN
NN-Hist-Dense

Classical
Bayes

NN-RNN
NN-Hist-Dense

MSE =
1

Ntraj

Ntraj

∑ (Δe − Δ)2 Measure how well the “prediction” compares to the “truth” (averaged over many samples)

• Using data without quantum 
correlations we obtain a 
larger deviation from the 
true parameter value 

• Using Bayesian inference on 
data with quantum 
correlations we significantly 
lower the deviation 

• The same test trajectories 
are used in both cases 

• Using neural networks we 
obtain MSE values similar to 
Bayesian inference

True value



Test with 2 parameters
(a) (b) (c)(a) (b) (c)

True value True value

Tr
ue

 v
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ue

Bayesian Inference NN InferenceMSE =
1

Ntraj

Ntraj

∑ (Δe − Δ)2

Log scale
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Test with 2 parameters(a) (b) (c)(a) (b) (c)

Bayesian Inference

NN Inference

vs

• Plot showing only the deviation on the 
parameter  

• Both parameter are estimated together 
from the data 

• Using ~10K trajectories to gather 
statistics on the MSE 

• Using neural networks we obtain results 
x10000 times faster

Δ



Results from noisy data
What happens when the training data is not “correct”?



Results from noisy data
What happens when the training data is not “correct”?

• The time delays from photon counting have jitter noise 
• The true parameters used in training are mis-calibrated
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• The Bayesian inference is 
using the “wrong” 
likelihood: no modeling of 
the noise!

• Larger noise means larger 
mis-modeling errors

• Using neural networks we 
obtain results that are 
robust to jitter noise

ϵ ∼ 𝒩(0,σ2
τ )
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• Using neural networks we 
obtain results that are 
robust to training noise and 
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results



Robust and speedy inference with NN
Does not need exact modeling of quantum sensors 
Does not need “big data” 
Reaches the limits of precision of Bayesian Inference 
Deployable to edge devices inside quantum labs 
Zenodo code and data release for reproducibility

https://zenodo.org/records/8392691

https://zenodo.org/records/8392691
https://zenodo.org/records/8305509




Importance of data
Classical vs Quantum data



Importance of data
Classical vs Quantum data

Bayesian Estimation Machine Learning

Input:

Estimation

Detection

Driven-dissipative Open Quantum System

Output:

Real value

External field

Emitted photons

Estimation Estimation



QuantumClassical

Single-photon resolution (”clicks”)No single-photon resolution Po
pu

la
tio

n

(a)

(b)

Quantum signal: 

Real value C
ou

nt
s

Tr
aj

ec
to

ry

(c)

(d) Classical signal:

(e)

(f)
Bayesian Estimation Machine Learning

Input:

Estimation

Detection

Driven-dissipative Open Quantum System

Output:

Real value

External field

Emitted photons

Estimation Estimation

T =
N

∑
i

τi

Po
pu

la
tio

n

(a)

(b)

Quantum signal: 

Real value C
ou

nt
s

Tr
aj

ec
to

ry

(c)

(d) Classical signal:

(e)

(f)



QuantumClassical

Single-photon resolution (”clicks”)No single-photon resolution 
Bayesian Estimation Machine Learning

Input:

Estimation

Detection

Driven-dissipative Open Quantum System

Output:

Real value

External field

Emitted photons

Estimation Estimation

Po
pu

la
tio

n

(a)

(b)

Quantum signal: 

Real value C
ou

nt
s

Tr
aj

ec
to

ry
(c)

(d) Classical signal:

(e)

(f)
Δ = 0.27γ Δ = 0.27γ

Po
pu

la
tio

n

(a)

(b)

Quantum signal: 

Real value C
ou

nt
s

Tr
aj

ec
to

ry

(c)

(d) Classical signal:

(e)

(f)



Bayesian Estimation Machine Learning

Input:

Estimation

Detection

Driven-dissipative Open Quantum System

Output:

Real value

External field

Emitted photons

Estimation Estimation

P( ⃗θ ∣ D) =
P(D ∣ ⃗θ)

P(D)
P0( ⃗θ) =

P(D ∣ ⃗θ)

∫ d ⃗θP(D ∣ ⃗θ)P0( ⃗θ)
P0( ⃗θ)

Data

Posterior

P(D ∣ ⃗θ) =
N

∏
i=1

w (τi; ⃗θ) Likelihood
This is the probability to 
observe D given a pair  ⃗θ

P0( ⃗θ)
This is the probability of a pair  

 before any observation⃗θ Prior

∫ d ⃗θP(D ∣ ⃗θ)P0( ⃗θ) This is a normalization factor Evidence



Training Test Inference

Neural Network workflow

• Collect “simulated” data using 
Qutip 

• ~4M trajectories (80-20 split 
for train-validation) 

• One case for 1D estimation 
(fix ) 

• One case for 2D estimation 
• Fix trajectories with 48 jumps 

• Fix the network architecture (no 
hyper-parameter optimization) 

• Minimize the Mean Squared 
Logarithmic Error (MSLE) with 
the Adam optimizer 

Ω

• Collect “simulated” data using 
Qutip 

• ~10K trajectories  
• These are completely 

different from the training set 
• Fix trajectories with 48 

jumps 
• For each true value of the 

parameters, compute the Mean 
Squared Error (MSE) with the 
predicted value 

• If the performance is 
satisfactory, save the model 
for inference 

• The model can be stored in a 
very compact form and be 
ready for deployment 

• Use the model on edge 
devices right next the 
experimental setup to do 
“real time” inference of the 
parameters 

Code on 
GitHub

https://qutip.org/
https://qutip.org/
https://github.com/CarlosSMWolff/ParamEst-NN


Definition of the two different architectures 
used in this work: 
1. Recurrent Neural Network (RNN) 
2. Fully connected Neural Network with 

Histogram layer (Hist-Dense) for both 
1D and 2D estimation 

Example of number of parameters in the 
case of the estimation of  for 1D and ( ,

) for 2D. 

Training is done with the Adam optimizer 
with default learning rate for 1200 epoch 
and batch size of 12800 on TPUs

Δ Δ
Ω

Neural Network 
details



Bias of the estimators in 1D

Code on 
GitHub

https://github.com/CarlosSMWolff/ParamEst-NN


Generalized (biased) Cramer-Rao bounds

Code on 
GitHub

https://github.com/CarlosSMWolff/ParamEst-NN


Deployment to edge devices

Code on 
GitHub

https://github.com/CarlosSMWolff/ParamEst-NN


Gammelmark, S. & Mølmer, K. Fisher Information and the Quantum Cramér-Rao 
Sensitivity Limit of Continuous Measurements.  
Physical Review Letters 112, 170401 (2014) 

• Metrology with non 
isolated systems 

• Metrology of time-varying 
signals 

• Magnetometry 
• Spectroscopy 
• Fluorescence 

microscopy 
• Device characterization 
• …



Prospects
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Fields such as quantum imaging are 
already capitalizing on the photonic
correlations for quantum metrology.

A more powerful data analysis based on
the combination of Bayesian inference
and machine learning could boost the
resolution in quantum microscopy and 
spectroscopy.

Schwartz, O. et al. Superresolution Microscopy with Quantum Emitters. Nano 
Letters 13, 5832–5836 (2013).

Tenne, R. et al. Super-resolution enhancement by quantum image scanning 
microscopy. Nature Photonics 13, 116–122 (2019).

Israel, Y. et al., Quantum correlation enhanced super-resolution localization 
microscopy enabled by a fibre bundle camera. Nature Communications 8, 1–5 
(2017).

Slide from Carlos Muñoz



Lightweight training

Well trained with less than 10k data points (trajectories)

Slide from Carlos Muñoz


