

Felix Frohnert & Evert van Nieuwenburg

Explainable Representation Learning of Quantum States

Utilizing Machine Learning to Understand Small Quantum Systems

22/11/2023

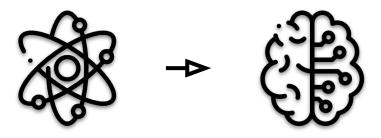
Audience Question

You are presented with a large set of random 2-qubit states and are tasked with selecting a new numerical representation of a singular variable. You are aiming to achieve optimal fidelity in reconstructing each state from your new representation. Which variable would you choose and what would be its physical meaning?

A broad overview and motivation for this project

Quantum Science is Difficult

... but sometimes machine learning can help: Tuning - Design - Representation



Quantum Science is Difficult

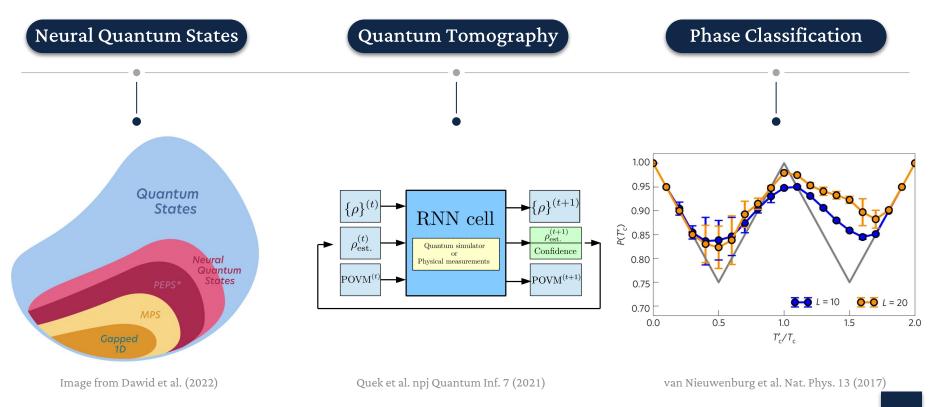
Interpretable Machine Learning

... but sometimes machine learning can help: Tuning - Design - Representation We want to gain scientific understanding from the machine-learned solutions!

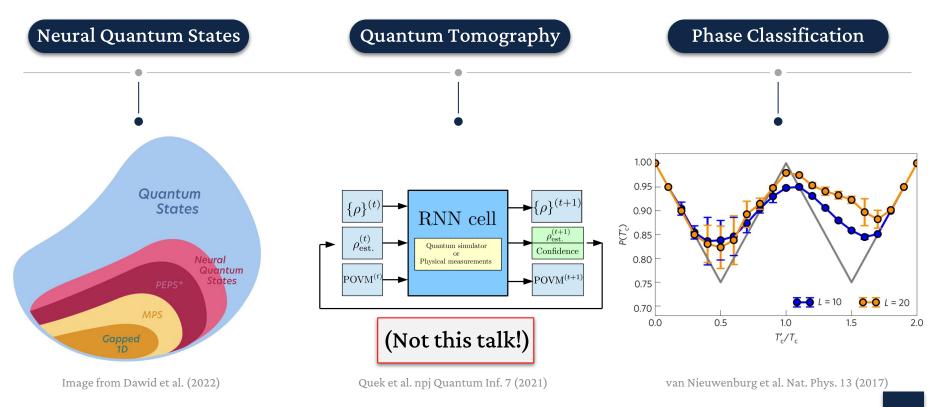
Quantum Science is Difficult	Interpretable Machine Learning
but sometimes machine learning can	We want to gain scientific understanding
help: Tuning - Design - Representation	from the machine-learned solutions!

Three Dimensions of Computer-Assisted Scientific Understanding

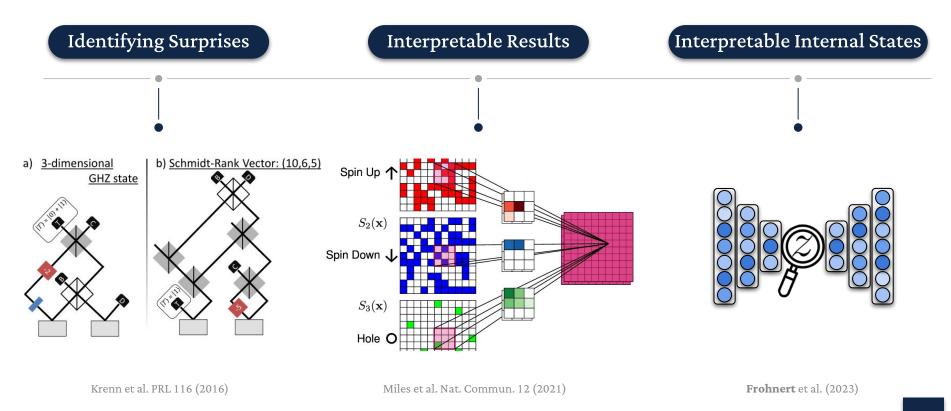
Context: Machine Learning as a Computational Microscope



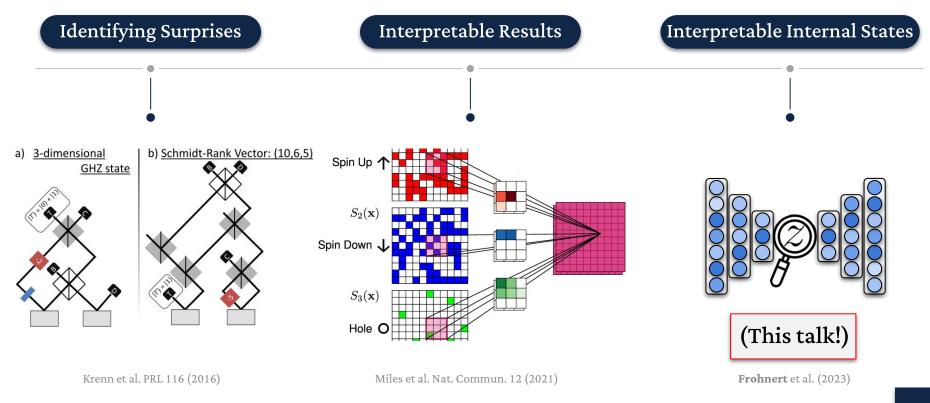
Context: Machine Learning as a Computational Microscope



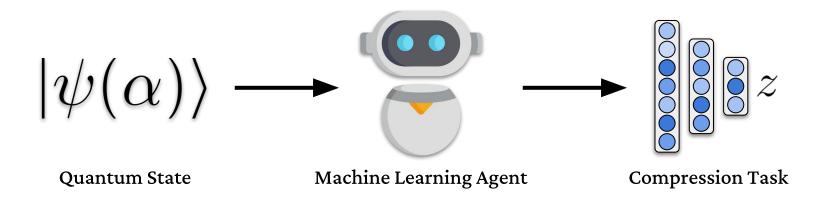
Context: Machine Learning as a Resource of Inspiration



Context: Machine Learning as a Resource of Inspiration

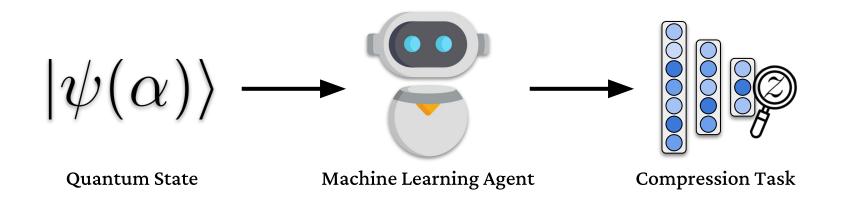


Simple Case-Study: How do machines represent quantum states?



Simple Case-Study: How do machines represent quantum states?

Investigate the Learned Internal Representation



Simple Case-Study: How do machines represent quantum states? Investigate the Learned Internal Representation How does the agent learn to perform the compression? $|\psi(\alpha)\rangle$ **Compression Task Quantum State** Machine Learning Agent

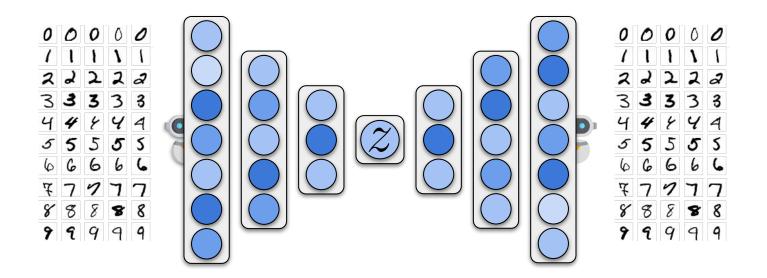
Simple Case-Study: How do machines represent quantum states? Investigate the Learned Internal Representation How does the agent learn to What (quantum) features are perform the compression? relevant for the agent? $|\psi(\alpha)\rangle$ **Quantum State** Machine Learning Agent **Compression Task**

Simple Case-Study: How do machines represent quantum states? Investigate the Learned Internal Representation 3 What (quantum) features are How does the agent learn to Is the learned representation relevant for the agent? perform the compression? human interpretable? $|\psi(\alpha)\rangle$ **Quantum State** Machine Learning Agent **Compression Task**

Methodology

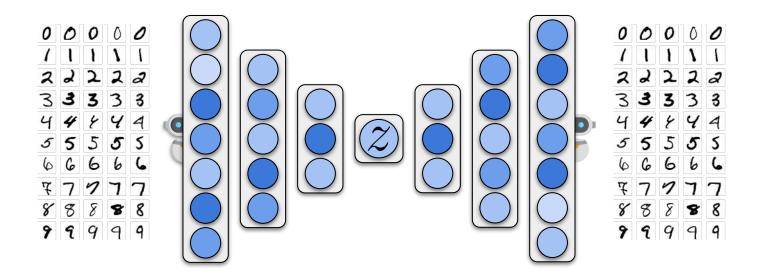
Using Variational Autoencoders to extract interpretable features

Neural-Network Autoencoders

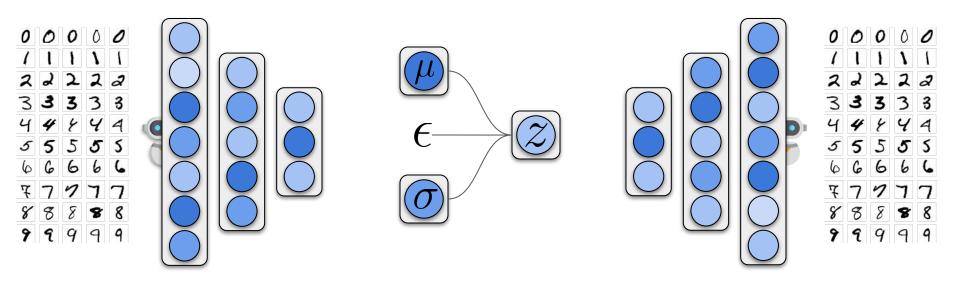


Unsupervised learning of efficient compressed representation via information bottleneck

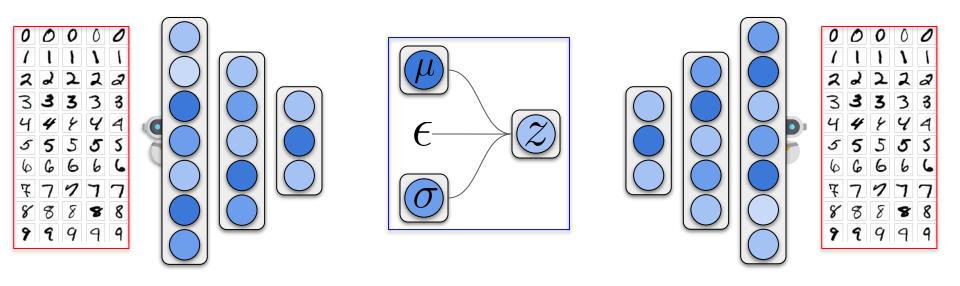
Neural-Network Autoencoders



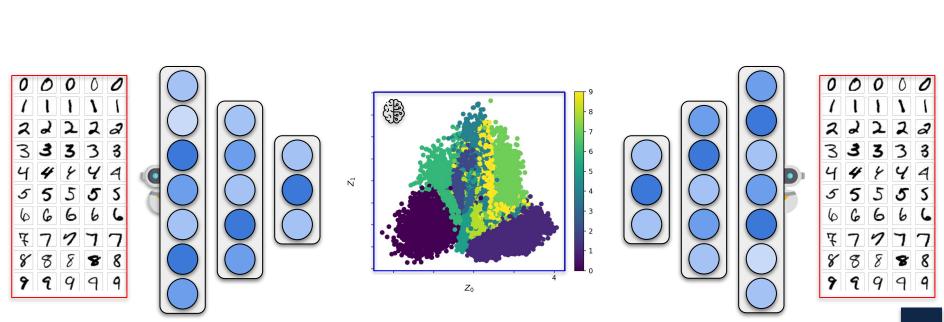
Latent space \mathcal{Z} acts as feature extractor

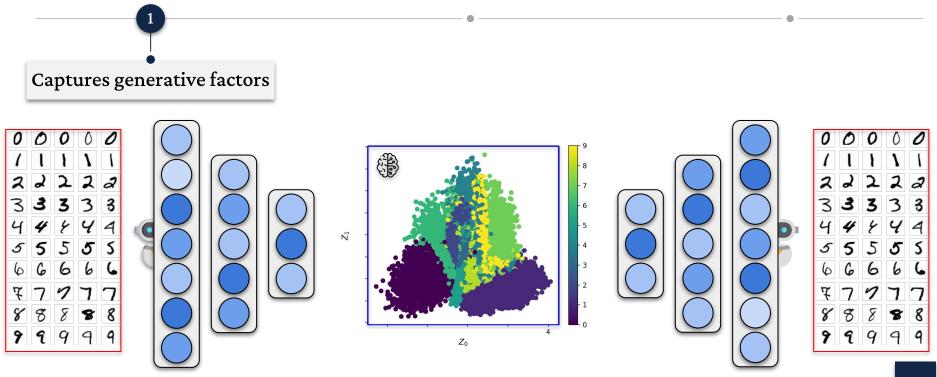


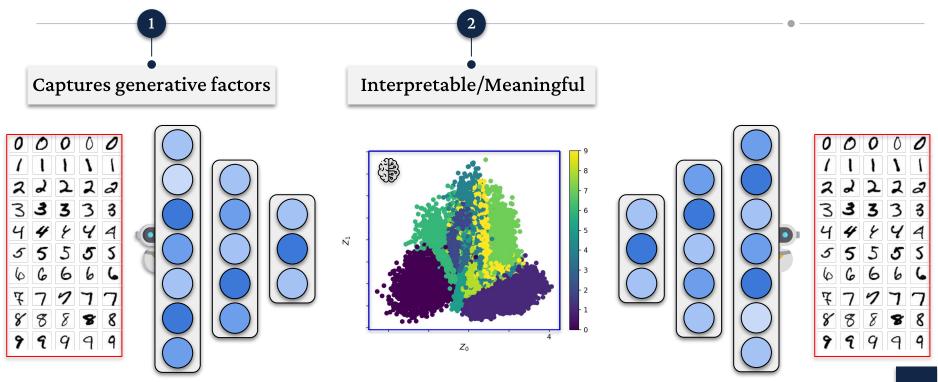
Probabilistic encoding and decoding to generate a latent space with continuous and structured representations

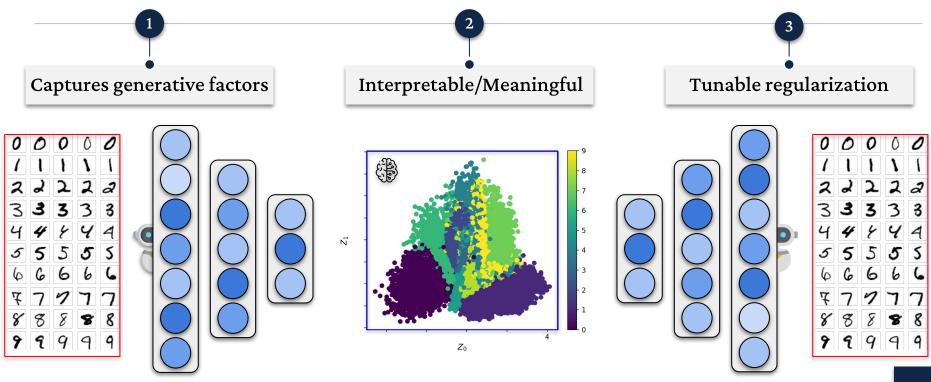


$$\mathcal{L}(\theta, \phi; \mathbf{x}) = E_{q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}) \right] - \beta \cdot KL(q_{\phi}(\mathbf{z} | \mathbf{x}) || p_{\theta}(\mathbf{z}))$$









Applications

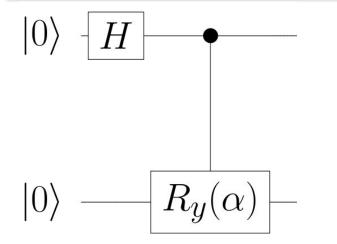
Proof-of-principle quantum system

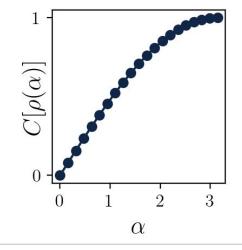
2-Qubit Quantum Circuit

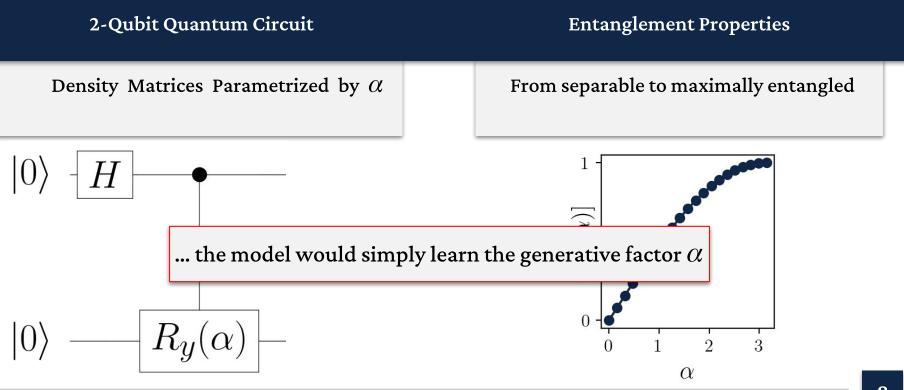
Entanglement Properties

Density Matrices Parametrized by lpha

From separable to maximally entangled



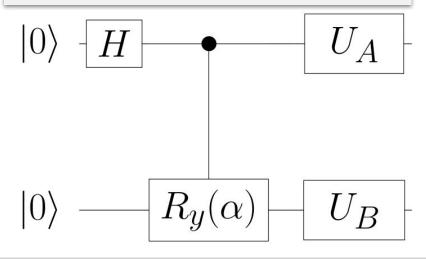




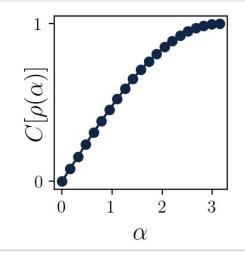
2-Qubit Quantum Circuit

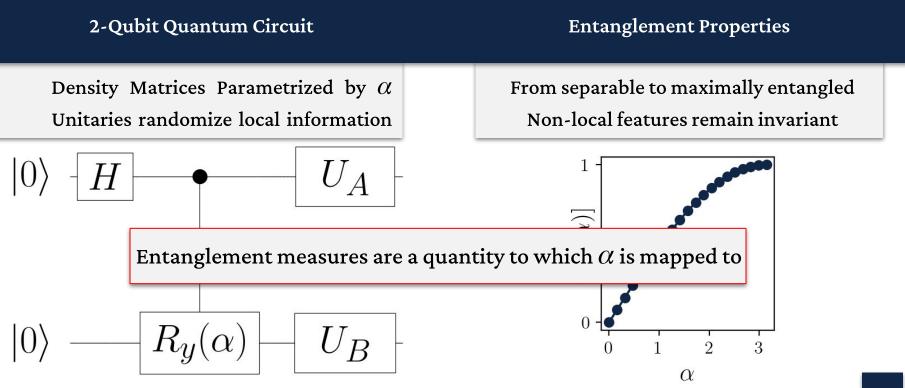
Entanglement Properties

Density Matrices Parametrized by α Unitaries randomize local information

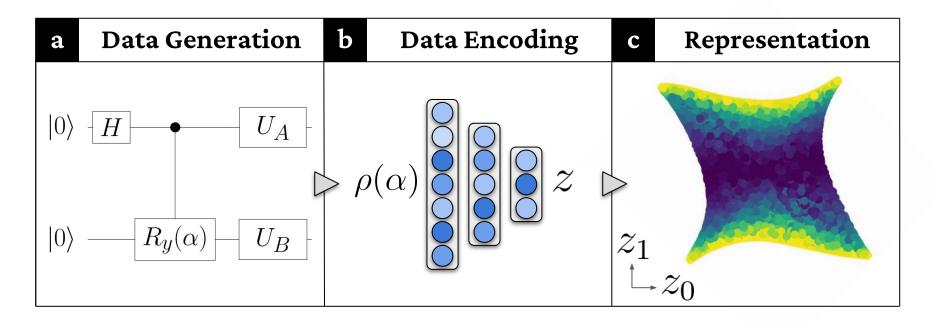


From separable to maximally entangled Non-local features remain invariant





Intermediate Summary



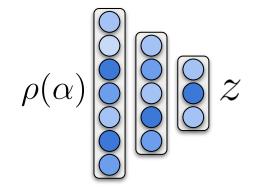
Does the model learn to recognize entanglement properties, if so, in which representation?

Tuning Regularization eta for an Interpretable Representation

Encoding Quantum States

Factorized Representations

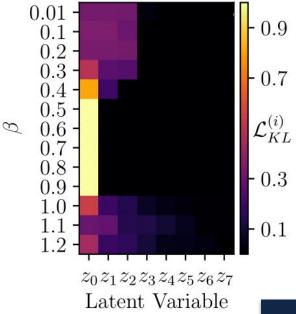
Activation of Latent Space



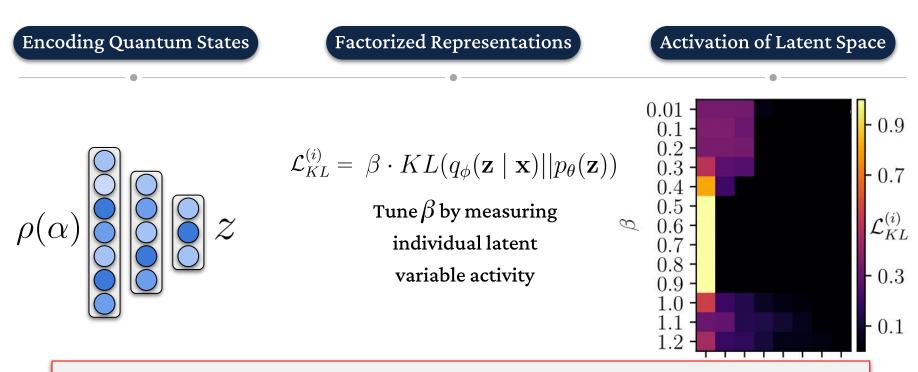
$$\mathcal{L}_{KL}^{(i)} = \beta \cdot KL(q_{\phi}(\mathbf{z} \mid \mathbf{x}) || p_{\theta}(\mathbf{z}))$$

Tune β by measuring individual latent

variable activity

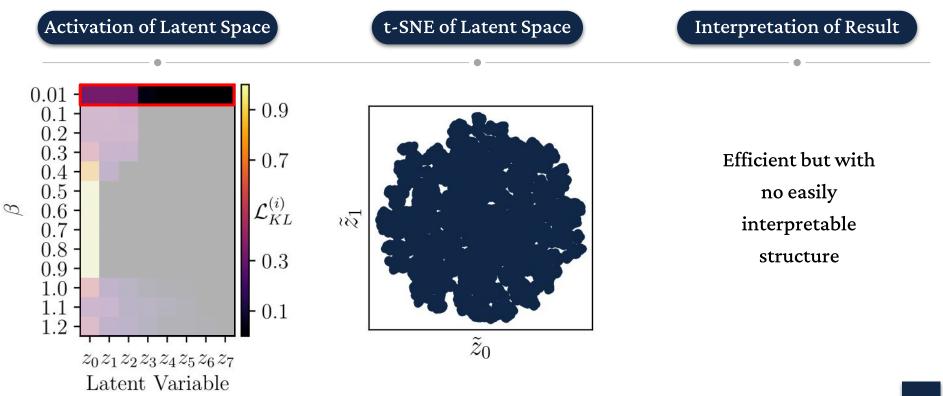


Tuning Regularization eta for an Interpretable Representation

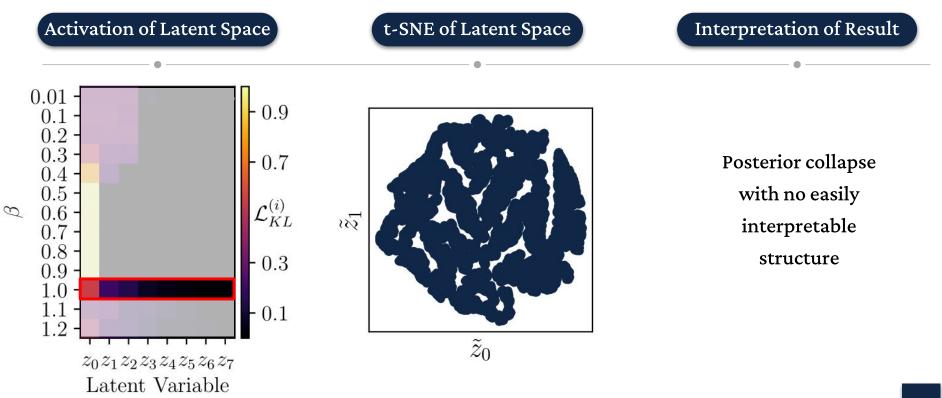


Goal: Find representation where #active variables equals #generative factors in dataset

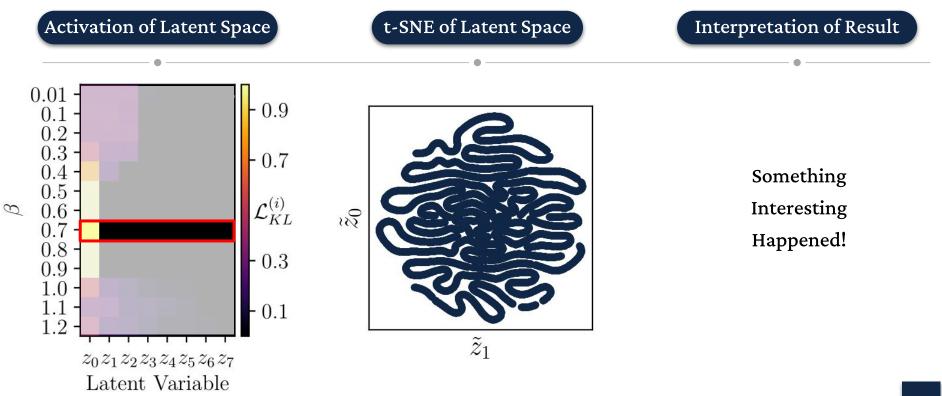
Investigating the Representation at Low eta

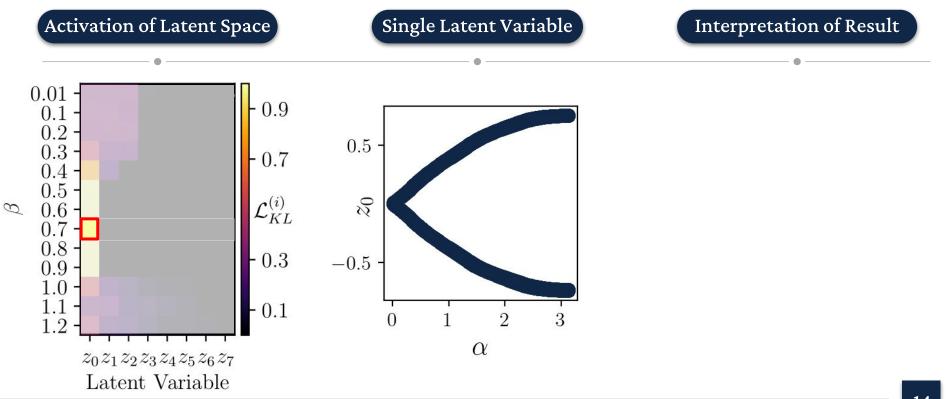


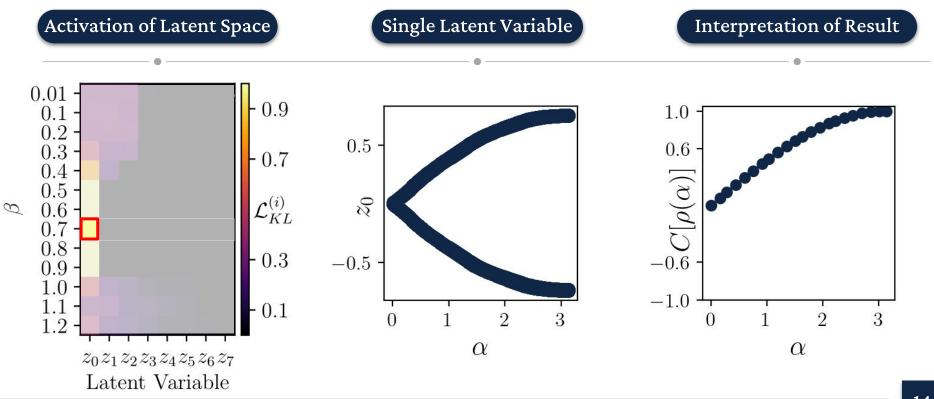
Investigating the Representation at High eta

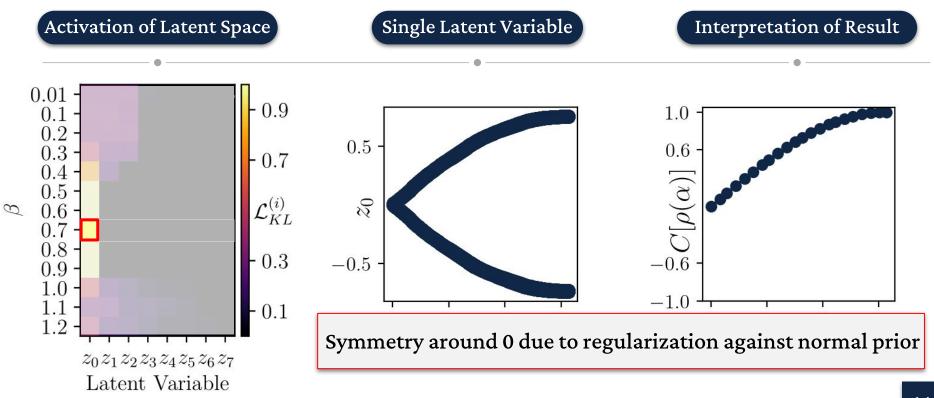


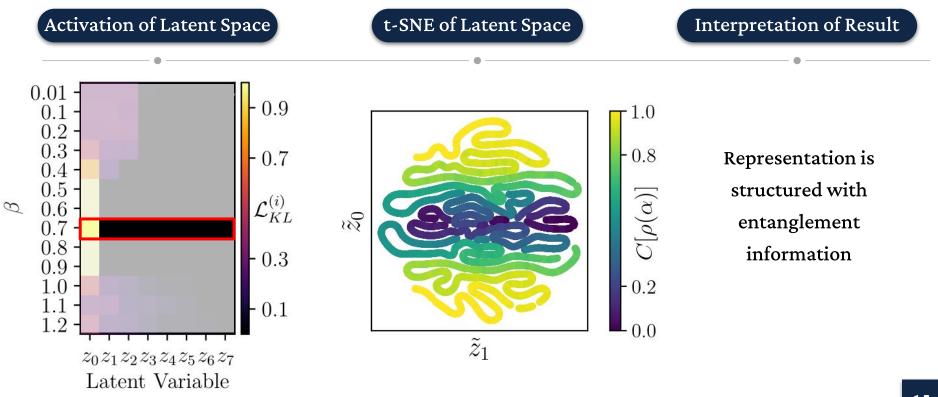
Investigating the Representation at Tuned eta







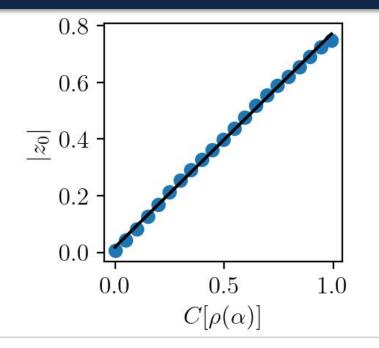




Using the Representation as Resource of Inspiration

Using the Representation as Resource of Inspiration

Relation to Concurrence



Machine-Designed Entanglement Measure

- 1. The agent finds that entanglement is important for this quantum system.
- 2. Use the representation to approximate an entanglement monotone with equal information content as concurrence (negativity).

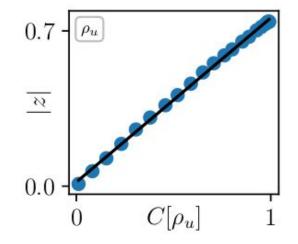
Using the Representation as Resource of Inspiration

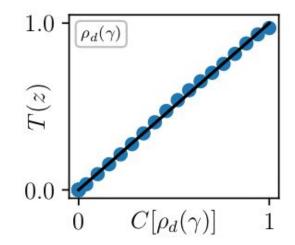
Generalizability to Random Pure States

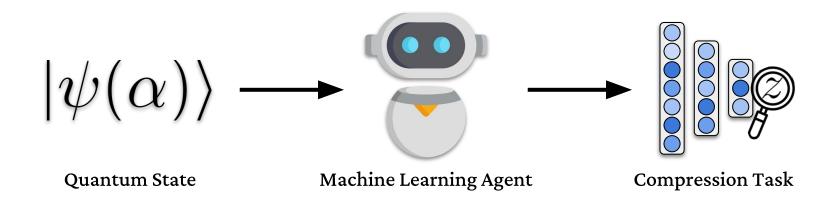
Generalizability to Mixed States

$$\rho_u = U_{AB} |00\rangle \langle 00| U_{AB}^{\dagger}$$

$$\rho_d(\gamma) = (1 - \gamma)\rho(\pi) + \frac{\gamma}{2}\mathbb{1}$$

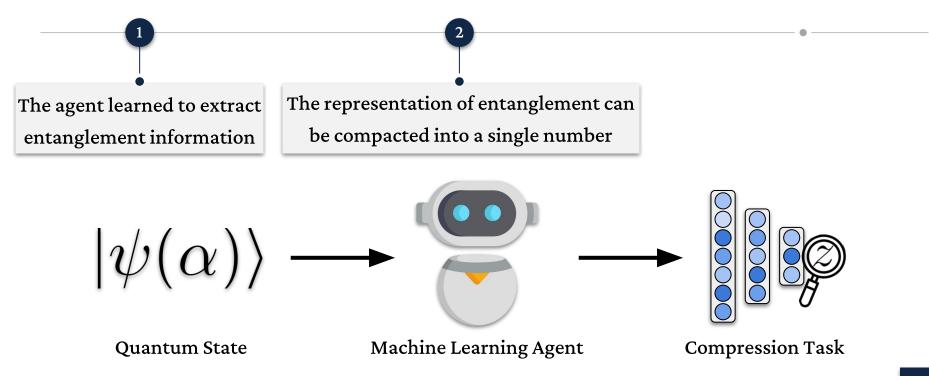


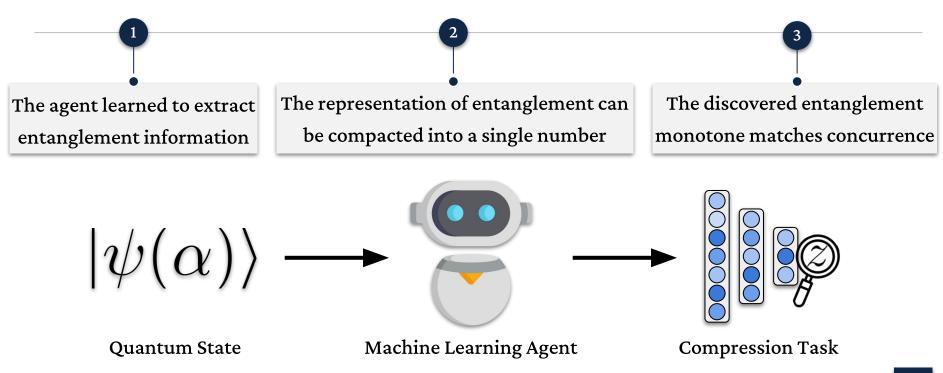


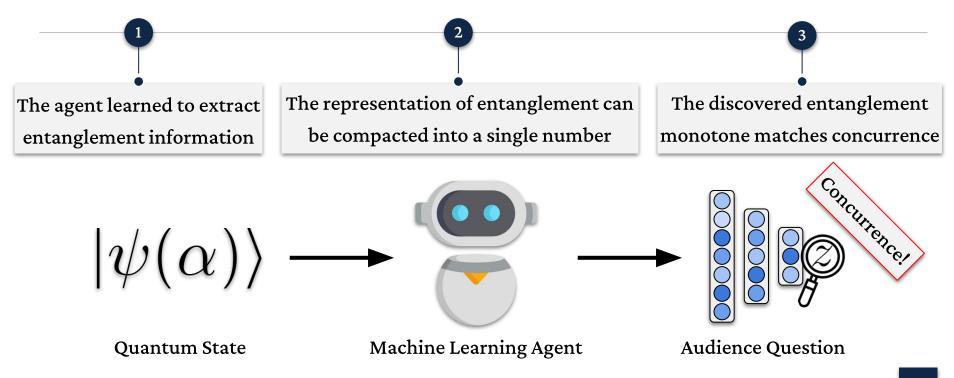


Let's summarize what we have learned

The agent learned to extract entanglement information $|\psi(\alpha)\rangle$ **Compression Task Quantum State** Machine Learning Agent

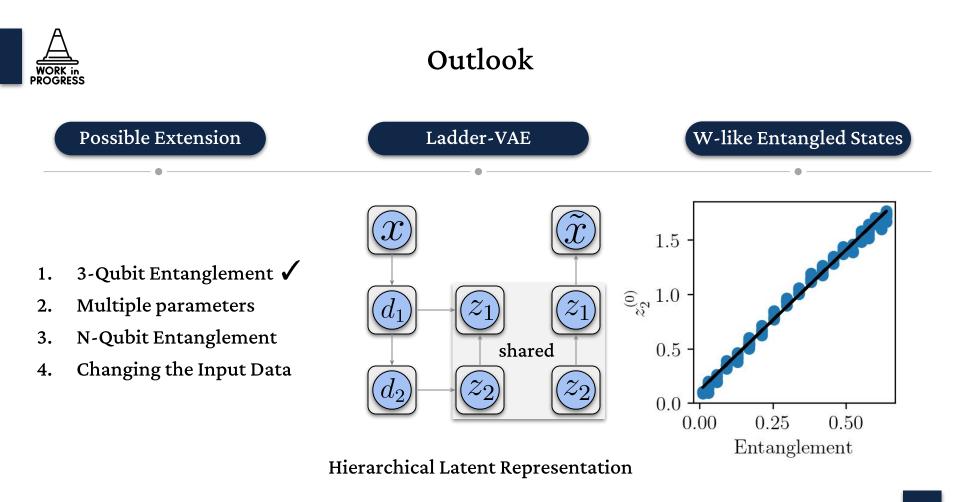






Outlook

Extending the methodology to larger system sizes



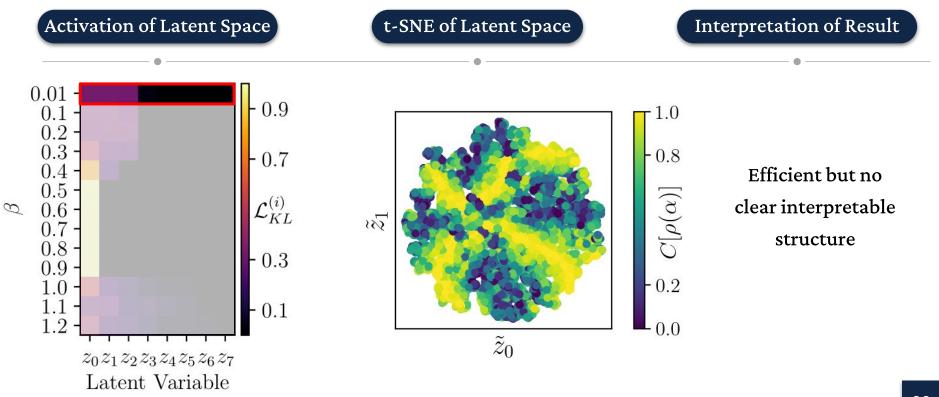
Felix Frohnert f.frohnert@ liacs.leidenuniv.nl

arXiv:2306.05694

Evert van Nieuwenburg

CAI Group

Investigating the representation at low eta



Investigating the representation at high eta

