Accelerating discovery in particle physics with AI

Jennifer Ngadiuba (Fermilab)

QTML conference **CERN** November 19–24, 2023

What we know

The beginning of this century marked a big expansion of our knowledge of the Universe, from the very small to the very large scale

The Standard Model

General relativity

What we don't know

Big Science in 21st century

Probing the **fundamental structure of nature** requires complex experimental devices, large infrastructures and big collaborations.

International
UON Collider Collaboration

LIGO/VIRGO interferometers

Vera C. Rubin Observatory

The DUNE neutrino experiment

Big Science = Big Data

- •Increasingly complex data both in **volume and dimensionality**
- •Increasing need for **efficient and accurate data processing** for high-throughput applications
- •Challenge in **simulating expectations** for what experiments may observe
- •But also need for innovative **data & discovery driven** physics analyses approaches

Sloan Digital Sky Survey Interactions in LArTPC A LHC collision ⁵

This talk

- •In this era of science **Artificial Intelligence can greatly accelerate time to discovery** as well-suited for **efficient analysis of large amounts of highly-dimensional data to find subtle patterns**
- With such capability it will allow us
	- enhance control and operations of detectors and accelerators
	- automate online and offline experimental workflows
	- save and maximize potentially lost data
	- accelerate detector R&D
	- and therefore, test hypotheses significantly faster

Machine Learning in HEP

- •**ML is used in particle physics since the '80s** Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery)
- **Over the last decade a rapid progress has led to a revolution in this area** Take advantage of industry breakthrough in deep learning and computing hardware

What changed?

- •Consider a typical data reduction workflow in place to deal with a high volume of data
- •Let's take LHC as an example…

Big Data @ the Energy Frontier The Large Hadron Collider (LHC)

A collision

Collision frequency: 40 MHz Particles per collision: O(103) Detector resolution: O(108) channels

AILAS

Extreme data rates of ~PB/s!

9

What changed?

- Consider a typical data reduction workflow in place to deal with a high volume of data
- •Let's take LHC as an example…

What changed?

- •Consider a typical data reduction workflow in place to deal with complex data
- •Let's take LHC as an example…
- **•This worked well… but can fail when patterns are even more subtle and rare**

What patterns are we washing out here?

- •Go back looking at the source highly dimensional data: *did we miss something through expert-level data reduction algorithms?*
- An AI could efficiently analyze these data and we can check, as experts, what the answer is: *does AI match our expectations and/or does it teach us something new?*

From expert-level features to raw data

A shallow neural network

A deep neural network

Data representation: which one?

The role of inductive bias

•Incorporating **domain knowledge** into ML *(inductive bias)* can provide **better accuracy, training/inference efficiency, smaller model size, interpretability and robustness**

<https://samiraabnar.github.io/articles/2020-05/indist> 15

- •CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the image data in computer vision tasks
- •**Leverage spatial symmetries** (translation invariance and equivariance) to achieve higher accuracy at lower computational cost wrt fully connected NNs
	- intelligent feature (patterns) extraction from raw pixel-level high-dimensional data
	- dramatic reduction in number of parameters

- •CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the image data in computer vision tasks
- •**Leverage spatial symmetries** (translation invariance and equivariance) to achieve higher accuracy at lower computational cost wrt fully connected NNs
	- intelligent feature (patterns) extraction from raw pixel-level high-dimensional data
	- dramatic reduction in number of parameters

- •Well suited for experimental data that come naturally as regular grid like images from **LArTPC detectors**
	- electrons produced by charged particles interacting with a large multiple-cubic meters volume of LAr
	- continuous stream of 3D images of detector volume yielding a **high-resolution "video"**

- •**MicroBooNE was the first LArTPC (170 ton) to deploy CNNs to solve otherwise technically challenging tasks:**
	- event classification [\[1611.05531\]](https://arxiv.org/abs/1611.05531)
	- particle ID [[1611.05531,](https://arxiv.org/abs/1611.05531) [1808.07269,](https://arxiv.org/abs/1808.07269) [2010.08653,](https://arxiv.org/abs/2010.08653) [2012.08513\]](https://arxiv.org/abs/2012.08513)
	- region-of-interest detection [\[1611.05531\]](https://arxiv.org/abs/1611.05531)

Big data @ the Intensity Frontier The Deep Underground Neutrino Experiment (DUNE)

- Next generation neutrinos oscillation experiment now under construction and R&D to start operations in late 2020s
- •Massive far detector 1 mile underground comprising **70k tons of LAr** andadvanced technology to record neutrino interactions with extraordinary precision
- •Uncompressed continuous readout of modules will yield **O(10 Tb/s)** → unprecedented for this type of experiment!

From images to point cloud

- •Experimental data are not always arranged as a regular grid-like structure
	- a heterogenous detector can provide high-resolution data on different information types
-

From images to point cloud

• Experimental data are not always arranged as a regular grid-like structure

•How do these data look like?

- Distributed unevenly in space
- Sparse
- Heterogenous
- Variable size
- No defined order
- Interconnections
- •A **point cloud representation** provides the required flexibility
- •**Graph Neural Networks** architectures can be designed that leverage physics laws **→ inductive bias**
	- permutation invariance/equivariance
	- symmetry group equivariance

 (b)

[arXiv.2203.12852](https://arxiv.org/abs/2203.12852)

Graph NNs in HEP

- Represent objects as points with pairwise relationships
- •Effectively capture complex relationships and dependencies between objects of many different kinds in HEP
	- energy deposits, individual physics objects, individual particles, heterogenous information
- **•Applications and architectures keep successfully growing!**

[arXiv.2203.12852](https://arxiv.org/abs/2203.12852) [arXiv.2007.13681](https://arxiv.org/abs/2007.13681) 22

Physics-informed ML

- Target applications of ML in HEP often have specific features such as symmetries, invariances/equivariances unique to our field
- •Developing **physics-specific solution can lead to improved performance**
- •A growing effort to design and study architectures with **injected symmetries**
- **•Dedicated NNs have been proposed such as to be invariant/equivariant to certain symmetries, e.g.:**
	- permutations
	- boost on z-axis, rotation on x-y plane
	- rotation on the η - ϕ plain
	- boost along the "jet axis"
	- full Lorentz transformations

- **•Identification of jets arising from hadronization of boosted W/Z/H/top is a key task in LHC physics:**
	- new physics searches, standard model measurements, higgs sector
	- **unique signature** from hadrons merging in single jet with substructure
	- exploit to suppress **overwhelming background from multijet** processes in most sensitive all-hadronic and semi-leptonic channels
- A topic of interest in both theory and experiment communities since \sim 30 years

ex: Graviton or Radion

production

• Recent years advancement in ML enabled more powerful algorithms (graph NNs, transformers, …)

- **Invariance under a Lorentz boost along the beam axis** (z-boost) has been obtained in the past through input preprocessing
- In this case the jet is conventionally represented as a set of particles with relative coordinates Δη/Δϕ w.r.t. jet axis
	- this pre-processing step is equivalent as: apply a boost on z-axis \rightarrow then a rotation on x-y plane (transverse plane) \rightarrow now jet points to the x-axis, *i.e.* $(\eta, \phi) = (0, 0)$

- Jet is represented as a set of particles with relative coordinates $\Delta \eta / \Delta \varphi$ w.r.t. jet axis
	- after pre-processing, we still have four additional DoFs for Lorentz transformation!
- A NN that respects Lorentz symmetry outputs a score that is invariant under any Lorentz transformation of the input jet

•A solution: design a dedicated structure to maintain invariant/equivariant

LorentzNet:

Physics-informed graph edge features given by the Minkowski inner product of two 4-vectors per each particle pair + Lorenz invariant particle interactions

$$
m_{ij}^l = \phi_e\left(h_i^l,h_j^l,\psi(\|x_i^l-x_j^l\|^2),\psi(\langle x_i^l,x_j^l\rangle)\right)
$$

<u>[JHEP 07, 30 \(2022\)](https://link.springer.com/article/10.1007/JHEP07(2022)030)</u> 26

Lorentz Group Equivariant Block (LGEB)

[arXiv.2208.07814](https://arxiv.org/abs/2208.07814)

[JHEP 07, 30 \(2022\)](https://link.springer.com/article/10.1007/JHEP07(2022)030)

Away from supervision

- Most of the tasks in HEP are supervised, i.e. ground truth labels or values are given to guide the learning
	- signal = 1 vs. background = $0 \rightarrow$ classification
	- target = observable (e.g. the Higgs mass) \rightarrow regression
- Novel **unsupervised** approaches being explored for new physics searches
	- fully data driven
	- no signal prior
- **•The anomaly detection approach:**
	- identifying rare events in data sets which deviate significantly from the majority of the data and do not conform to "normal" behaviour
	- normal behaviour can be learnt through a NN

How do we learn the normal behaviour?

Anomaly detection for jets

 $|\text{loss} = ||\mathbf{x} - \mathbf{\hat{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$

- One of the first applications was for signal-independent jet tagging using images
- Recently also point-cloud AE architectures were studied [see [2212.07347](https://arxiv.org/abs/2212.07347)]

 (20) [*] Heimel et al.: [SciPost Phys. 6, 030 \(2019\)](https://scipost.org/10.21468/SciPostPhys.6.3.030) , Farina et al.: [Phys. Rev. D 101, 075021 \(2020\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021)

Apply to the analysis

- •Many different strategies studied but no single strategy has emerged as the most universally powerful → **big community effort!**
- •CMS and ATLAS analyses using these techniques are now emerging and growing in number [[2306.03637](https://arxiv.org/abs/2306.03637), [2005.02983,](https://arxiv.org/abs/2005.02983) [CERN-EP-2023-112](http://cds.cern.ch/record/2863895)]
- **•Many challenges still remain, e.g.:**
	- training setup (e.g., avoid spurious correlations resulting in "fake" anomalies)
	- incorporate physics knowledge w/o loosing generalizability to unknown physics
	- extension to more complex final states
	- hard to find a control region to test robustness
	- anomalies interpretations

The LHC Olympics 2020

A Community Challenge for Anomaly **Detection in High Energy Physics**

Gregor Kasieczka (ed), ¹ Benjamin Nachman (ed), ^{2,3} David Shih (ed), ⁴ Oz Amram, ⁵ Anders Andreassen, ⁶ Kees Benkendorfer, $2,7$ Blaz Bortolato, 8 Gustaaf Brooijmans, 9 Florencia Canelli, 10 Jack H. Collins, 11 Biwei Dai, 12 Felipe F. De Freitas, 13 Barry M. Dillon, $8,14$ Ioan-Mihail Dinu, 5 Zhongtian Dong, 15 Julien Donini, 16 Javier Duarte, 17 D. A. Faroughy¹⁰ Julia Gonski, ⁹ Philip Harris, ¹⁸ Alan Kahn, ⁹ Jernej F. Kamenik, ^{8,19} Charanjit K. Khosa, 20,30 Patrick Komiske, 21 Luc Le Pottier, 2,22 Pablo Martín-Ramiro, 2,23 Andrej Matevc, 8,19 Eric Metodiev, 21 Vinicius Mikuni, 10 Inês Ochoa, ²⁴ Sang Eon Park, ¹⁸ Maurizio Pierini, ²⁵ Dylan Rankin, ¹⁸ Veronica Sanz, ^{20, 26} Nilai Sarda, ²⁷ Uroš Seljak, ^{2,3,12} Aleks Smolkovic, ⁸ George Stein, ^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin, 16 Jean-Roch Vlimant, 29 Daniel Williams, 9 Mikaeel Yunus 18

More AI = less interpretability?

- When studying the universe, physicists do not just want the facts, but want to understand why things work the way they do
- Similarly AI demands explanation, not just accurate predictions
	- how did it solve the problem
	- does the solution make sense
- •Major challenge for interpretability of ML models comes their strength: **the ability to non-parametrically describe non-linear functions of high-dimensional data**
	- with unconstrained functional form ability to discover unexpected strategies but also cloaks the learned strategy within a black box
- One could open the box but **challenging to extract insights from thousands of nodes and their millions connections**

More AI = less interpretability?

- In simple cases (using expert level features), drop an input feature or decorrelate the model from feature to find feature importance
- For unstructured data like images, new approaches being developed to tackle this crucial problem although still a relatively limited efforts expected to grow
	- embedding physics laws (symmetries and/or theoretical constraints) [previous slides]
	- construct provably monotonic w.r.t. some features [\[2112.00038\]](https://arxiv.org/abs/2112.00038)
	- project metrics on already-identified physical observables
	- assemble a complete basis of interpretable observables and map the black box into that space [\[2010.11998\]](https://arxiv.org/abs/2010.11998)

Example [\[2010.11998\]](https://arxiv.org/abs/2010.11998): Automated way to find a set of high level features [EFPs] that include all the information a CNN is implicitly learning from raw calorimeter images

How to deal with uncertainties?

- Power of AI comes from finding subtle non-linear patterns in training data this also makes it more susceptible to discrepancies between simulation and data
- A wide variety of techniques have been developed to quantify uncertainties as propagated through machine learning models
	- decorrelation
	- data augmentation
	- conditioning
- **• Opportunity: ML unlocks completely new methods to tackle uncertainties in a way classical methods could not → back port to traditional algorithms?**
	- eg., more robust ML-based background estimation

Adversarial decorrelation

S vs B **Regress NP** Classifier f Adversary r Z **NN** Popular approach based on the idea output $\gamma_1(f(X; \theta_f); \theta_r)$ of **decorrelating** from specific $f(X; \theta_f)$ $\gamma_2(f(X; \theta_f); \theta_r)$ $\mathcal{P}(\gamma_1,\gamma_2,\dots)$ X nuisance parameters *Z:* e.g., through adversarial training $p_{\theta_r}(Z|f(X;\theta_f))$ $\mathcal{L}_f(\theta_f)$ $\mathcal{L}_r(\theta_f, \theta_r)$ θ_f θ_r

 $L_{\text{Classifier}} = L_{\text{Classification}} - \lambda \cdot L_{\text{Adversary}}$

[arXiv.1611.01046](https://arxiv.org/abs/1611.01046)

ML for fast simulation

[CERN-LHCC-2020-015](https://cds.cern.ch/record/2729668)

[from D. Shih at Snowmass 2021 \(Seattle\)](https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf) 35

Accelerating simulation with ML

- Many different approaches being explored but no one has emerged yet as the final solution:
	- Variational Autoencoders
	- Generative Adversarial Networks
	- Normalizing Flows
	- Diffusion models
- **•Impressive effort to tackle major challenges of obtaining high-fidelity and computationally efficient models**

[https://calochallenge.github.io/](https://calochallenge.github.io/homepage/) [See summary at ML4Jets 2023](https://indico.cern.ch/event/1253794/contributions/5588599/)

Towards foundation models

- A foundation model is a large ML model trained on a vast quantity of data such that it can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, …)
	- **self-supervised learning:** use the data itself to create training objective
	- **outputs:** powerful representations usable in other tasks

reusable — one backbone used for several tasks **train on huge real data** – leverage experimental data **leverage multi-modal methods** – combine data from different detectors to address more complex tasks **uncertainty reduction** – reduce dependence on simulation-based training

Towards foundation models

- A foundation model is a large ML model trained on a vast quantity of data such that it can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, …)
	- **self-supervised learning:** use the data itself to create training objective
	- **outputs:** powerful representations usable in other tasks

Brings new challenges, adaptation from language & vision not always direct, lost of space to explore for development in HEP

Computing aspects

- Deploying AI in production for experiments requires increasingly computing resources
- •CPU-based computing suboptimal with the growth of models and data complexity
- •Need specialized hardware as well as AI-hardware/software empowered infrastructures and tools for computing (edge, local, and cloud)
	- the ability to exploit new generation AI hardware can really boost the exploration and adoption of ML-based solutions

offline computing real-time processing

R_{ring} MI models to bardware for real-time ΔI P_{unif} we thought to nare true for real annon the study high level evnthesis for mechine leep this section by discussing how to create an ecient and optimal firmware implementation of a neural *Bring ML models to hardware for real-time AI* **high level synthesis for machine learning**

2.1 a concept A codesign tool to build ML models with hardware in mind and providing efficient platforms for programming the hardware.

Real-time AI

- •Port ML to real-time data processing systems for **smarter data reduction**
	- eg., can do sophisticated event-level or particle-level reconstruction and identification already on hardware in first level of trigger systems
- •Port ML to detector front-end electronics for **smarter data compression**

Quantization-aware training

- •Ef ficient hardware implementation uses reduced precision wrt floating point
- Post-training quantization can affect accuracy
	- for a given bit allocation, the loss minimum at floating-point precision might not be the minimum anymore
- One could specify quantization while look for the minimum
	- maximize accuracy for minimal FPGA resources
- Workflow: quantization-aware training with [Google QKeras](https://github.com/google/qkeras) and firmware design with [hls4ml](https://github.com/fastmachinelearning/hls4ml) for best NN inference on FPGA performance

Summary and outlook

- •**Machine Learning has developed into a powerful set of statistical methods** that have influenced nearly every aspect of high-energy physics
	- while covering only a subset of applications in this talk the main message is that **with ML we can do more with less**
	- new approaches and applications, new human-unknown patterns, more automatization and thus accelerated time to discovery!
- **• Our unique challenges need new expertise, knowledge, and resources**
- *• How do we capture interest of non HEP collaborators?*
	- Straightforward way: the physics mission is beautiful and engaging
	- Find unique aspects for our science that could push the bounds of ML research