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What we know

The beginning of this century marked a big expansion of our knowledge of
the Universe, from the very small to the very large scale

The Standard Model General relativity

Force
Carriers

\/

]}.-.‘] f ~Z boson L Phto

Higgs‘.‘tsgoson \/ C

[ W boson| glion ]

splitter detector

D » X)' Light waves cancel
each other out
the light detector

The last missing piece,

discovered in 2012 at the LHC!



What we don’t know

Neutrino masses

Explains only 5% of the universe.
No SM candidate
for dark matter!

@ AstroKatie/Planck13

Baryon-antibaryon
asymmetry?¢

Gravity not included
in the theory




Big Science in 21st century

Probing the fundamental structure of nature
requires complex experimental devices, large infrastructures
and big collaborations.

The Large .Hadron .
Collider\ |

International
UON Collider
7Collaboration

anfori
Underground Fermilab

PARTICLE



Big Science = Big Data

* Increasingly complex data both in volume and
dimensionality

e Increasing need for efficient and accurate data
processing for high-throughput applications

e Challenge in simulating expectations for what
experiments may observe

e But also need for innovative data & discovery
driven physics analyses approaches

ProtoDUNE Data

Sloan Digital Sky Survey Interactions in LArTPC

A3D3 Institute

https://a3d3.ai/
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This talk

e In this era of science Artificial Intelligence can greatly accelerate time to discovery as
well-suited for efficient analysis of large amounts of highly-dimensional data to find
subtle patterns

A3D3 Institute

19 FPGA/ASIC 1 PB/vr
10 1 TB/yr y

e With such capability it will allow us

- enhance control and operations of detectors
and accelerators

- automate online and offline experimental
workflows VT
- save and maximize potentially lost data LHC HLT
Google Cloud
- accelerate detector R&D .
- and therefore, test hypotheses
significantly faster 10" LHCLIT  puNE -
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Machine Learning in HEP

e ML is used in particle physics since the ‘80s
Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery)

e Over the last decade a rapid progress has led to a revolution in this area
Take advantage of industry breakthrough in deep learning and computing hardware
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https://www.sciencedirect.com/science/article/pii/S037026932030229X?via=ihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.231801
https://link.springer.com/article/10.1007/JHEP12(2020)085

What changed?

e Consider a typical data reduction workflow in place to deal with a high volume of data

e | et’s take LHC as an example...



~ Collision frequency: 40 MHz

e

3 = e " W Particles per collision: O(103)
e e . ' Detector resolution: O(108) channels

WP

S

«
N

—

- 2 1 ».. o ¢
&//,’ \\\\"v .
4/// \\\\\‘ - Sd 1 =

R ’t‘.‘i‘\ :

CMS E{pe\rimem at the LHE; CERN
««;"' Y| Data recorded; 2016-Oct-14 00:56:16,738952 GMT
L= | Run/Event/ LS 283171./.142530805 /254

—_—— N

¢ b > . e v B S - - ; =~ ‘
" < . o A ! - — S SN
- J - e S S SRR
==
= -

w4
.
- -
-
-

- -



e Consider a typical data reduction workflow in place to deal with a high volume of data

What changed?

e | et’s take LHC as an example...
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What changed?

e Consider a typical data reduction workflow in place to deal with complex data
e | et’s take LHC as an example...

e This worked well... but can fail when patterns are even more subtle and rare

CMS 35.9 fb™ (13 TeV)
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What patterns are we washing out here?

e Go back looking at the source highly dimensional data:
did we miss something through expert-level data reduction algorithms?

e An Al could efficiently analyze these data and we can check, as experts, what the
answer is: does Al match our expectations and/or does it teach us something new?
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From expert-level features to raw data

A shallow neural network

&k — 1737 [l

Input Feature extraction Classification Output

A deep neural network

e — izt - Il

Input Feature extraction + Classification Output
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Data representation: which one?

f High level/no structure:
fully connected NN
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* Incorporating domain knowledge into ML (inductive bias) can provide better accuracy,

The role of inductive bias

training/inference efficiency, smaller model size, interpretability and robustness

§\“

A model with weak
inductive biases

— -\\></

ﬁ %\\\ |

inductive bias

(3

A

/

A model with strong —
es

—

https://samiraabnar.github.io/articles/2020-05/indist
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https://samiraabnar.github.io/articles/2020-05/indist

Example: Convolutional NN

e CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the
image data in computer vision tasks

e Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt fully connected NNs

- intelligent feature (patterns) extraction from raw pixel-level high-dimensional data

- dramatic reduction in number of parameters

/ A translation 0
/1 = o
// , '§ —> invariant —>-_ a.
/| - model »
/ / y I
..' / / //
] A 1A // L —
’ 7 4
i // LV
; pdrdls 2 -,
' /|
// = A model - -
/ S - sensitive to —— ‘g.
- translation E— @
input feature map 3
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Example: Convolutional NN

e CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the
image data in computer vision tasks

e Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt fully connected NNs

- intelligent feature (patterns) extraction from raw pixel-level high-dimensional data

- dramatic reduction in number of parameters
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Example: Convolutional NN

?J i/w"is v pl fi
e Well suited for experimental data that come T
naturally as regular grid like images from i \
LArTPC detectors il \ /

- electrons produced by charged particles
interacting with a large multiple-cubic meters
volume of LAr

- continuous stream of 3D images of detector |
volume yielding a high-resolution “video” 2 A

Y wire plane waveforms

17



Example: Convolutional NN

e MicroBooNE was the first LArTPC (170 ton) to deploy CNNs
to solve otherwise technically challenging tasks:

- event classification [1611.05531]

- particle ID [1611.05531, 1808.07269, 2010.08653, 2012.08513]

- region-of-interest detection [1611.05531]

512x512x1

}

Conv 3x3, stride=2, 64 channel
Conv 3x3, stride=1, 64 channel
AvgPooling, 2x2
3x3, stride=1, 96 channel
3x3, stride=1, 96 channel
AvgPooling, 2x2
3x3, stride=1, 128 channel
3x3, stride=1, 128 channel
AvgPooling, 2x2
3x3, stride=1, 160 channel
3x3, stride=1, 160 channel
AvgPooling, 2x2
3x3, stride=1, 192 channel
3x3, stride=1, 192 channel
AvgPooling, 2x2

Fully Connected Layer, 12,288 nodes

Fully Connected Layer, 1,536 nodes

'
IIFII
" Sigmoid_|

!
proonll <l l -l
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https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1808.07269
https://arxiv.org/abs/2010.08653
https://arxiv.org/abs/2012.08513
https://arxiv.org/abs/1611.05531

Big data @ the Intensity Frontier

The Deep Underground Neutrino Experiment (DUNE)

Fermilab /
\/
\\ [,
\\ /
\\d/

Sanford
— Underground
\ Research Facility
L\
|

3\

¢
|

NEUTRINO
PRODUCTION

/[ UNDERGROUND PARTICLE

PARTICLE DETECTOR DETECTOR

e Next generation neutrinos oscillation experiment now under construction and R&D to
start operations in late 2020s

e Massive far detector 1 mile underground comprising 70k tons of LAr and advanced
technology to record neutrinointeractions with extraordinary precision

e Uncompressed continuous readout of modules will yield O(10 Tb/s) = unprecedented
for this type of experiment!
19



From images to point cloud

e Experimental data are not always arranged as a regular grid-like structure

- a heterogenous detector can provide high-resolution data on different information types

Eg, the CMS detector

. p I I 1 | I I | I
im 2 3m 4m 5m 6m 7m

Key:

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron

se---- Photon

W HCAL

. : > Clusters
hadron s m detector

ﬁl;:zﬁg <)article-ﬂow H‘

Detector pr-resolution n/®-segmentation

Tracker 0.6% (0.2 GeV) — 5% (500 GeV) 0.002 x 0.003 (first pixel layer)
ECAL 1% (20 GeV) —0.4% (500 GeV) 0.017 x 0.017 (barrel)
HCAL  30% (30 GeV) — 5% (500 GeV) 0.087 x 0.087 (barrel)
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From images to point cloud

e Experimental data are not always arranged as a regular grid-like structure

e How do these data look like?

Distributed unevenly in space 45
° &5, S =
Sparse e
ud ¢ 37 \&i‘ ?

Heterogenous

Variable size
No defined order

- Interconnections -
° °§‘:{:°:°o° :: o, °
. . . > o
* A point cloud representation provides %% T
the required flexibility =

e Graph Neural Networks architectures
can be designed that leverage e
physics laws = inductive bias (Copon) (7]

. . . ; ; MET
- permutation invariance/equivariance

- symmetry group equivariance arXiv.2203.12852

21


https://arxiv.org/abs/2203.12852

Graph NNs in HEP

e Represent objects as points with pairwise relationships

e Effectively capture complex relationships and dependencies between objects of many
different kinds in HEP

- energy deposits, individual physics objects, individual particles, heterogenous information

e Applications and architectures keep successfully growing!

Static isotropic Static anisotropic i Dynamic

* E.g. GCN * E.g. Interaction (An)isotropic
Network * E.g. GravNet

Node prediction Edge prediction Graph prediction

* E.g. Node regression * E.g. Social network * E.g. Molecular
or classification link prediction property regression

Object Instance Spatio-Temporal
segmentation segmentation « Eg STGCN (Graph

e E.g. Find all « E.g. Find each conv. + temporal
hydrogen in graph hydrogen in graph conv.)

arXiv.2203.12852 arXiv.2007.13681 22



https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2203.12852

Physics-informed ML

e Target applications of ML in HEP often have specific features such as symmetries,
invariances/equivariances unique to our field

e Developing physics-specific solution can lead to improved performance
e A growing effort to design and study architectures with injected symmetries

e Dedicated NNs have been proposed such as to be invariant/equivariant to certain
symmetries, e.g.:

1.00 1.00 1.00

| Original | y—z rotation ] x—t boost
- pe rm u tati O n S 0.50 4 0.50 4 0.50 4
- boost on z-axis, % o0 3 o0 2 oo
rotation on x-y plane
-0.50 A -0.50 A -0.50 A
- rotation on the n—-¢ plain » . » I -
-1.0 -0.5 2,(7) 0.5 1.0 -1.0 -0.5 22 0.5 1.0 -1.0 -0.5 2,(; 0.5
- boost along the “jet axis”
. z-tilt 0‘75_ y—tilt
- full Lorentz transformations X
transverse ?; - . Om: . 0400
plane 025 - -0.25
> -0.50 A -0.50 A
Z -0.75 4 -0.75 4
beam axis oo ' ' ' oo ' ' ‘
y -1.0 -0.5 22 0.5 1.0 -1.0 -0.5 Zr(; 0.5 1.0

arXiv.2208.07814 23



https://arxiv.org/abs/2208.07814

Example: jet tagging

e Identification of jets arising from hadronization of boosted
W/Z/H/top is a key task in LHC physics:

- new physics searches, standard model measurements, higgs sector
ex: Graviton or Radion

- unique signature from hadrons merging in single jet production q
with substructure

- exploit to suppress overwhelming background from multijet
processes in most sensitive all-hadronic and semi-leptonic
channels

e A topic of interest in both theory and experiment communities q
since ~ 30 years

* Recent years advancement in ML enabled more powerful algorithms (graph NNss,
transformers, ...)

SIGNAL JETS

BACKGROUND JET s

(single q/g) VS

t—-UJg—qgQqq
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Example: jet tagging

* Invariance under a Lorentz boost along the beam axis (z-boost) has been obtained in the

past through input preprocessing

e In this case the jet is conventionally represented as a set of particles with relative
coordinates An/Ad w.r.t. jet axis

% this pre-processing step is equivalent as:
apply a boost on z-axis - then a rotation on x-y plane (transverse plane) > now
jet points to the x-axis, i.e. (n, ¢) =(0, 0)

jet axis points to x-axis

(n, ¢)=(0, 0)

L
c
S A
Q.
1) \.\ 1 “"./ ol >\
\! x
- S gk
n A\ //' Q
\ W\ > S
L) x‘}u{\\ ! 74 /// IS <
Sy, et/ g
‘.*'\'@i'\ \\\‘fwi.‘}‘}/’,’/‘f/ A I < ¢
'.h.&;\‘%///

<

'll
/ '
translation on ¢

An
<€ >
translation on n=boost on z-axis
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Example: jet tagging

* Jet is represented as a set of particles with relative coordinates An/A¢ w.r.t. jet axis
- after pre-processing, we still have four additional DoFs for Lorentz transformation!

e A NN that respects Lorentz symmetry outputs a score that is invariant under any Lorentz
transformation of the input jet

e A solution: design a dedicated structure to maintain invariant/equivariant

‘ LorentzNet:
e _— Physics-informed graph edge features
given by the Minkowski inner product of

Con ) b two 4-vectors per each particle pair +
¢ Lorenz invariant particle interactions

oD

xl mly = e (1, it = a1, G )

t]
S MLP () Sum Pooling ) Minkowski Norm &

Inner Product

Lorentz Group Equivariant Block (LGEB) JHEP 07, 30 (2022) 26



https://link.springer.com/article/10.1007/JHEP07(2022)030

Example: jet tagging

LorentzNet,, . y-z rotation o LorentzNet,, . x-t boost
0.980 I 097 §
0.978 : N
0.8
O 0.976 A ®
2 2
0.974 1 —}— LorentzNet, . 0.771 —— LorentzNet, .
0.972 - —}— LorentzNety,,, +pairwise m;; —}— LorentzNet,, . +pairwise m;;
—}— LorentzNety, . +pairwise AR; —}— LorentzNet,,, +pairwise AR;
0.970 1 —f— LorentzNet,,, +sairwise AR;i(py; +py;) 07 —— LorentzNet,, . +Eairwisc AR;(pr; +prj) /
—+— LorentzNet,,, +pairwise E;; —+— LorentzNet,, . +pairwise E;;
0.968 - : : : : - l | | 0.5 | I : - A
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Time on CPU | Time on GPU
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ResNeXt X 9.5 0.34 1.46M
P-CNN X 0.6 0.11 348k
PFN X 0.6 0.12 82k
ParticleNet X 11.0 0.19 366k
EGNN E(4) 30.0 0.30 222k
LGN SO+(1,3) 51.4 1.66 4.5k
LorentzNet | SO™(1,3) 32.9 0.34 224k
Tram.mg Model Accuracy | AUC 1/en 1/en
Fraction (es =0.5) | (es =0.3)
0.5% ParticleNet 0.913 0.9687 7T t4 199 £+ 14
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Effl(:lency 19% ParticleNet 0.919 0.9734 103 +£5 287+ 19
LorentzNet 0.932 0.9812 | 209+5 697 1 58
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arXiv.2208.07814

JHEP 07, 30 (2022)
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https://arxiv.org/abs/2208.07814
https://link.springer.com/article/10.1007/JHEP07(2022)030

Away from supervision

* Most of the tasks in HEP are supervised, i.e. ground truth labels or values are given to
guide the learning

- signal = 1 vs. background = 0 = classification

- target = observable (e.g. the Higgs mass) = regression

e Novel unsupervised approaches being explored for new physics searches

- fully data driven A outliers
or anomalies
- no signal prior
e The anomaly detection approach: @

- identifying rare events in data sets which deviate
significantly from the majority of the data and do
not conform to “normal” behaviour

- normal behaviour can be learnt through a NN

How do we learn the normal behaviour?
28



Anomaly detection for jets

e.g, |et images

e.g, et images

neural network neural network

encoder decoder

X =d(z)

loss

e One of the first applications
was for signal-independent
jet tagging using images

e Recently also point-cloud AE

architectures were studied
[see 2212.07347]

| x-%|2 = ||x-d2) |2 = ||x-d(e(x)|]

103 7
] QCD
t
Lo j (400 GeV)
Q ; g e
w Constituents
= Bottleneck 6 better
5 102 7 AUC 0.93 0.8
A /
L
g 0.6
2 Images
3 Bottleneck 32
o 10! 4 AUC 0.89 0.4
ﬁ ]
O
m
0.2
100 T T T T T 1 00
0.0 0.2 0.4 0.6 0.8 1.0 10~/
Signal efficiency €5 Reconstruction Error

[*] Heimel et al.: SciPost Phys. 6, 030 (2019) , Farina et al.: Phys. Rev. D 101, 075021 (2020) 29


https://arxiv.org/abs/2212.07347
https://scipost.org/10.21468/SciPostPhys.6.3.030
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021

Apply to the analysis

e Many different strategies studied but no single strategy has emerged as the most
universally powerful = big community effort!

e CMS and ATLAS analyses using these techniques are now emerging and growing in
number [2306.03637, 2005.02983, CERN-EP-2023-112]

e Many challenges still remain, e.g.: The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

- training setup (e.g., avoid spurious correlations
resulting in “fake” anomalies)

- incorporate physics knowledge w/o loosing
generalizability to unknown physics

- extension to more complex final states

Gregor Kasieczka (ed),! Benjamin Nachman (ed),?? David Shih (ed),* Oz Amram,®
Anders Andreassen,’ Kees Benkendorfer,>” Blaz Bortolato,® Gustaaf Brooijmans,’

- hard to flnd a ContrOI reglon to test Florencia Canelli,'° Jack H. Collins,!! Biwei Dai,'? Felipe F. De Freitas,'> Barry M.
Dillon,®!* loan-Mihail Dinu,®> Zhongtian Dong,'® Julien Donini,'® Javier Duarte,'” D.
I‘ObUS’[ﬂ €ss A. Faroughy'® Julia Gonski,’ Philip Harris,'® Alan Kahn,® Jernej F. Kamenik,?°

Charanjit K. Khosa,?*3° Patrick Komiske,?! Luc Le Pottier,>??> Pablo
Martin-Ramiro,??3 Andrej Matevc,?'° Eric Metodiev,?! Vinicius Mikuni,'? Inés
4 N 1 Ochoa,?* Sang Eon Park,'® Maurizio Pierini,?> Dylan Rankin,'® Veronica Sanz,?0:26
- anomalies interpretation - - - ' -
anomalies te p etations Nilai Sarda,?” Uros Seljak,?%'? Aleks Smolkovic,® George Stein,?!? Cristina Mantilla
Suarez,® Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,'®
Louis Vaslin,'6 Jean-Roch Vlimant,?° Daniel Williams,? Mikaeel Yunus'®

arXiv.2101.08320
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https://arxiv.org/abs/2306.03637
https://arxiv.org/abs/2005.02983
http://cds.cern.ch/record/2863895
https://arxiv.org/abs/2101.08320

More Al = less interpretability?

e When studying the universe, physicists do not just want the facts, but want to understand
why things work the way they do

e Similarly Al demands explanation, not just accurate predictions
- how did it solve the problem
- does the solution make sense

* Major challenge for interpretability of ML models comes their strength: the ability to
non-parametrically describe non-linear functions of high-dimensional data

- with unconstrained functional form ability to discover unexpected strategies but also cloaks
the learned strategy within a black box

e One could open the box but challenging to extract insights from thousands of nodes
and their millions connections

31



More Al = less interpretability?

e In simple cases (using expert level features), drop an input feature or decorrelate the
model from feature to find feature importance

e For unstructured data like images, new approaches being developed to tackle this crucial
problem although still a relatively limited efforts expected to grow

- embedding physics laws (symmetries and/or theoretical constraints) [previous slides]

- construct provably monotonic w.r.t. some features [2112.00038]

- project metrics on already-identified physical observables

- assemble a complete basis
of interpretable observables
and map the black box into
that space [2010.11998]

Example [2010.11998]: Automated
way to find a set of high level features
[EFPs] that include all the information
a CNN is implicitly learning from raw
calorimeter images

Signal/Background Pairs
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Black-Box
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https://arxiv.org/abs/2112.00038
https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2010.11998

How to deal with uncertainties?

e Power of Al comes from finding subtle non-linear patterns in training data — this also
makes it more susceptible to discrepancies between simulation and data

e A wide variety of techniques have been developed to quantify uncertainties as
propagated through machine learning models

- decorrelation
- data augmentation

- conditioning

e Opportunity: ML unlocks completely new methods to tackle uncertainties in a way
classical methods could not = back port to traditional algorithms?

- eg., more robust ML-based background estimation
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Adversarial decorrelation

Popular approach based on the idea
of decorrelating from specific
nuisance parameters Z:

e.g., through adversarial training
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https://arxiv.org/abs/1611.01046

ML for fast simulation

CERN-LHCC-2020-015

Wall clock consumption per workflow

e HEP experiments rely heavily on simulations from
experimental design all the way to data analysis

e Detector simulation (GEANT4) and event
generation (MG5, Pythia, Herwig, ...) are major
and growing bottlenecks at LHC and other
experiments

@® MC simulation @ MC reconstruction @ MC event generation
® Analysis @® Group production @ Data processing
@® Other

Figure 1: ATLAS CPU hours used by various activities in 2018

1010 events SLOW but ACCURATE

10° events Surrogate model 1019 events

(GAN, VAE, Normalizing Flow, ...)
Learn underlying distribution of GEANT4 events

FAST and ACCURATE?

GEANT4

GEANTA4

ML methods can provide fast and accurate “surrogate models” for GEANT4 etc

from D. Shih at Snowmass 2021 (Seattle) 35



https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://cds.cern.ch/record/2729668

Accelerating simulation with ML

e Many different approaches being explored but no one has emerged yet as the final
solution:

Variational Autoencoders

Generative Adversarial Networks

Normalizing Flows

Diffusion models

e Impressive effort to tackle major challenges of obtaining
high-fidelity and computationally efficient models

Fast Calorimeter Simulation Challenge 2022

s B
K. P Tue 2. é : . .
b, Ttz 2l —— CaloDiffusion —— iCaloFlow teacher €— 1 Pang MLdJets 22
View on GitHub " )
T. Buss, Mon 1lam meep ~— L2LFlows MAF ===+ iCaloFlow student
o "’
===+ conv. L2LFlows ——— SuperCalo €— [ Pang, Mon 230pm
E. Emst, Mon 11.15am ==} _ Ca|oVAE+INN CaloMan €— . Cresswell ML4Jets 22
Welcome to the home of the first-ever Fast Calorimeter Simulation Challenge! E. Buhmann, Tue 3pm é —— CaloClouds DNN CaloSim
The purpose of this challenge is to spur the development and benchmarking of fast and high-fidelity Q. Liu, Mon 11.45am q Calo-vQ GEANT4 transformer
calorimeter shower generation using deep learning methods. Currently, generating calorimeter F. Ernst, Mon 11.15am _) CaloINN DeepTree P M. Scham, Tue 12.15pm|
showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a major computational . . .
bottleneck at the LHC, and it is forecast to overwhelm the computing budget of the LHC experiments V. Mikuni MLA4Jets 22 ) CaloScore CaloPointFlow ( S. Schnake, Tue 11.45an
in the near future. Therefore there is an urgent need to develop GEANT4 emulators that are both fast V. Mikuni, Tue 2 15pm - ==« CaloScore distilled ——  CaloShowerGAN L I
(computationally lightweight) and accurate. The LHC collaborations have been developing fast : 4 : ﬁ _____ . _ —— M. Faucci-Giannelli
simulation methods for some time, and the hope of this challenge is to directly compare new deep CaloScore Smgle shot CaloShower2GAN h MLA4Jets 22
learning approaches on common benchmarks. It is expected that participants will make use of - CaloFlow teacher ~  =:--- CaloShower3GAN
;:Iutting-edge techniques in generative modeling with deep learning, e.g. GANs, VAEs and normalizing Il Pang MlL4Jets 22 —) ==« CaloFlow student —— "GEANTA4 reference”
ows.
N J

https://calochallenge.github.io/ See summary at ML4Jets 2023
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https://calochallenge.github.io/homepage/
https://indico.cern.ch/event/1253794/contributions/5588599/

Towards foundation models

e A foundation model is a large ML model trained on a vast quantity of data such that it
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, ...)

- self-supervised learning: use the data itself to create training objective

- outputs: powerful representations usable in other tasks

Tasks

Large Unlabelled C3S Jet Tagging
Dataset oo
p
Charged @ MI_D_ileu_p
Particle Tracks G : itigation
Calorimeter 5
Clusters Pre-training Fine-tuning Track-Calo
E dati Clustering
Calorimeter oundation
Hits Model
Particle-Flow
Muon Tracks ‘ Reconstruction
Small Labelled -q D;p Event
Ll L P Analysis
Multiple modalities
Anomaly

%

from M. Kagan at H&N 2023 Detection

reusable — one backbone used for several tasks
train on huge real data — leverage experimental data
leverage multi-modal methods — combine data from different detectors to address more complex tasks

uncertainty reduction — reduce dependence on simulation-based training +



Towards foundation models

e A foundation model is a large ML model trained on a vast quantity of data such that it
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, ...)

- self-supervised learning: use the data itself to create training objective

- outputs: powerful representations usable in other tasks

Tasks
.
Larg: Utnlal:elled > @ Jet Tagging
atase
/- .
Charged . % Mft’_lleu_p
Particle Tracks c ' itigation
Calorimeter @
Clusters Pre-training Fine-tuning B Track-Calo
Calorimeter Fo:nnddatlion 7 Clustering
Hits ode .
o2 o Particle-Flow
Muon Tracks o ' Reconstruction
Small Labelled (e Evont
Dataset ) Analysis
Multiple modalities
Iy
v @ Anomaly
N .
from M. Kagan at H&N 2023 '+ | Detection

Brings new challenges,
adaptation from language & vision not always direct,
lost of space to explore for development in HEP
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Computing aspects

e Deploying Al in production for experiments requires increasingly computing resources
e CPU-based computing suboptimal with the growth of models and data complexity

e Need specialized hardware as well as Al-hardware/software empowered infrastructures
and tools for computing (edge, local, and cloud)

- the ability to exploit new generation Al hardware can really boost the exploration and
adoption of ML-based solutions

ASICs

offline computing real-time processing
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Bring ML models to hardware for real-time Al
high level synthesis for machine learning

A codesign tool to build ML models with hardware in mind and providing
efficient platforms for programming the hardware.

Many use cases in HEP and beyond... and still growing!
(see Fast Machine Learning For Science Workshop Sep '23)

Keras
TensorFlow
PyTorch

his 4 ml

compressed
model

HLS
conversion

Usual ML
software workflow
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it

Co-processing kernel

tune configuratio
precision
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Custom firmware
design

g
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HLS )

COMPILER

Catapult

eeeeeeeeeeeeeee
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Real-time Al

e Port ML to real-time data processing systems for smarter data reduction

- eg., can do sophisticated event-level or particle-level reconstruction and identification
already on hardware in first level of trigger systems

e Port ML to detector front-end electronics for smarter data compression

CMS Experiment \C/\;zzldv:i::ie rid
40 MHz collision rate puting §
Exabyte-scale
~1B detector channels
datasets

FPGA filter stack
Huge input data rates up to PB/s ~Hs latency

Latencies down to the ns L Pb/s

~5 kHz

‘ = : y \ S
Low resources W) = | 10s (y

10s Th/s
100s kHz

On-detector ASIC - \

compression
~100 ns latency

Low power

On-prem CPU/GPU filter farm
~100 ms latency
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Quantization-aware
training

e Efficient hardware implementation uses reduced
precision wrt floating point

e Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be
the minimum anymore

e One could specify quantization while look
for the minimum

- maximize accuracy for minimal FPGA resources

e Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)
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https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2006.10159

Summary and outlook

e Machine Learning has developed into a powerful set of statistical methods that have
influenced nearly every aspect of high-energy physics

- while covering only a subset of applications in this talk the main message is that with ML we
can do more with less

- new approaches and applications, new human-unknown patterns, more automatization and
thus accelerated time to discovery!

e Our unique challenges need new expertise, knowledge, and resources
e How do we capture interest of non HEP collaborators?
- Straightforward way: the physics mission is beautiful and engaging

- Find unique aspects for our science that could push the bounds of ML research
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