Accelerating discovery in particle physics with AI

Jennifer Ngadiuba (Fermilab)

QTML conference CERN November 19–24, 2023

What we know

The beginning of this century marked a big expansion of our knowledge of the Universe, from the very small to the very large scale

General relativity

What we don't know

Big Science in 21st century

Probing the **fundamental structure of nature** requires complex experimental devices, large infrastructures and big collaborations.

MInternational UON Collider Collaboration

LIGO/VIRGO interferometers

Vera C. Rubin Observatory

The DUNE neutrino experiment

Big Science = Big Data

- Increasingly complex data both in **volume and dimensionality**
- Increasing need for **efficient and accurate data processing** for high-throughput applications
- Challenge in **simulating expectations** for what experiments may observe
- But also need for innovative **data & discovery driven** physics analyses approaches

Sloan Digital Sky Survey

Interactions in LArTPC

5

This talk

- In this era of science Artificial Intelligence can greatly accelerate time to discovery as well-suited for efficient analysis of large amounts of highly-dimensional data to find subtle patterns
- With such capability it will allow us
 - enhance control and operations of detectors and accelerators
 - automate online and offline experimental workflows
 - save and maximize potentially lost data
 - accelerate detector R&D
 - and therefore, test hypotheses significantly faster

Machine Learning in HEP

- ML is used in particle physics since the '80s Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery)
- Over the last decade a rapid progress has led to a revolution in this area Take advantage of industry breakthrough in deep learning and computing hardware

What changed?

- Consider a typical data reduction workflow in place to deal with a high volume of data
- Let's take LHC as an example...

Big Data @ the Energy Frontier The Large Hadron Collider (LHC)

A collision

Collision frequency: 40 MHz Particles per collision: O(10³) Detector resolution: O(10⁸) channels

> Data recorded: 2016-Oct-14 09:56:16,733952 GMT Run / Event / LS: 283171 / 142530805 / 254

AILAS

Extreme data rates of ~PB/s!

What changed?

- Consider a typical data reduction workflow in place to deal with a high volume of data
- Let's take LHC as an example...

What changed?

- Consider a typical data reduction workflow in place to deal with complex data
- Let's take LHC as an example...
- This worked well... but can fail when patterns are even more subtle and rare

What patterns are we washing out here?

- Go back looking at the source highly dimensional data: *did we miss something through expert-level data reduction algorithms?*
- An AI could efficiently analyze these data and we can check, as experts, what the answer is: *does AI match our expectations and/or does it teach us something new?*

From expert-level features to raw data

A shallow neural network

A deep neural network

Data representation: which one?

The role of inductive bias

• Incorporating **domain knowledge** into ML (*inductive bias*) can provide **better accuracy**, **training/inference efficiency**, **smaller model size**, **interpretability and robustness**

https://samiraabnar.github.io/articles/2020-05/indist

- CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the image data in computer vision tasks
- Leverage spatial symmetries (translation invariance and equivariance) to achieve higher accuracy at lower computational cost wrt fully connected NNs
 - intelligent feature (patterns) extraction from raw pixel-level high-dimensional data
 - dramatic reduction in number of parameters

- CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the image data in computer vision tasks
- Leverage spatial symmetries (translation invariance and equivariance) to achieve higher accuracy at lower computational cost wrt fully connected NNs
 - intelligent feature (patterns) extraction from raw pixel-level high-dimensional data
 - dramatic reduction in number of parameters

- Well suited for experimental data that come naturally as regular grid like images from **LArTPC detectors**
 - electrons produced by charged particles interacting with a large multiple-cubic meters volume of LAr
 - continuous stream of 3D images of detector volume yielding a **high-resolution "video"**

- MicroBooNE was the first LArTPC (170 ton) to deploy CNNs to solve otherwise technically challenging tasks:
 - event classification [1611.05531]
 - particle ID [1611.05531, 1808.07269, 2010.08653, 2012.08513]
 - region-of-interest detection [1611.05531]

Big data @ the Intensity Frontier The Deep Underground Neutrino Experiment (DUNE)

- Next generation neutrinos oscillation experiment now under construction and R&D to start operations in late 2020s
- Massive far detector 1 mile underground comprising **70k tons of LAr** and advanced technology to record neutrino interactions with extraordinary precision
- Uncompressed continuous readout of modules will yield **O(10 Tb/s)** → unprecedented for this type of experiment!

From images to point cloud

- Experimental data are not always arranged as a regular grid-like structure
 - a heterogenous detector can provide high-resolution data on different information types

Detector	p _T -resolution	η/Φ-segmentation
Tracker	0.6% (0.2 GeV) – 5% (500 GeV)	0.002 x 0.003 (first pixel layer)
ECAL	1% (20 GeV) – 0.4% (500 GeV)	0.017 x 0.017 (barrel)
HCAL	30% (30 GeV) – <mark>5%</mark> (500 GeV)	0.087 x 0.087 (barrel)

From images to point cloud

• Experimental data are not always arranged as a regular grid-like structure

• How do these data look like?

- Distributed unevenly in space
- Sparse
- Heterogenous
- Variable size
- No defined order
- Interconnections
- A **point cloud representation** provides the required flexibility
- Graph Neural Networks architectures can be designed that leverage physics laws → inductive bias
 - permutation invariance/equivariance
 - symmetry group equivariance

(b)

arXiv.2203.12852

Graph NNs in HEP

- Represent objects as points with pairwise relationships
- Effectively capture complex relationships and dependencies between objects of many different kinds in HEP
 - energy deposits, individual physics objects, individual particles, heterogenous information
- Applications and architectures keep successfully growing!

arXiv.2203.12852

arXiv.2007.13681

Physics-informed ML

- Target applications of ML in HEP often have specific features such as symmetries, invariances/equivariances unique to our field
- Developing physics-specific solution can lead to improved performance
- A growing effort to design and study architectures with **injected symmetries**
- Dedicated NNs have been proposed such as to be invariant/equivariant to certain symmetries, e.g.:
 - permutations
 - boost on z-axis, rotation on x-y plane
 - rotation on the $\eta {-} \varphi$ plain
 - boost along the "jet axis"
 - full Lorentz transformations

- Identification of jets arising from hadronization of boosted W/Z/H/top is a key task in LHC physics:
 - new physics searches, standard model measurements, higgs sector
 - **unique signature** from hadrons merging in single jet with substructure
 - exploit to suppress **overwhelming background from multijet** processes in most sensitive all-hadronic and semi-leptonic channels

g G G W(Z) g W(Z)

ex: Graviton or Radion

production

• Recent years advancement in ML enabled more powerful algorithms (graph NNs, transformers, ...)

q

 $\overline{\mathbf{0}}$

q

q

- Invariance under a Lorentz boost along the beam axis (z-boost) has been obtained in the past through input preprocessing
- In this case the jet is conventionally represented as a set of particles with relative coordinates $\Delta \eta / \Delta \varphi$ w.r.t. jet axis
 - * this pre-processing step is equivalent as: *apply a boost on z-axis* \rightarrow *then a rotation on x-y plane* (transverse plane) \rightarrow **now** jet points to the *x*-axis, *i.e.* (η , ϕ) = (0, 0)

- Jet is represented as a set of particles with relative coordinates $\Delta \eta / \Delta \varphi$ w.r.t. jet axis
 - after pre-processing, we still have four additional DoFs for Lorentz transformation!
- A NN that respects Lorentz symmetry outputs a score that is invariant under any Lorentz transformation of the input jet

• A solution: design a dedicated structure to maintain invariant/equivariant

LorentzNet:

Physics-informed graph edge features given by the Minkowski inner product of two 4-vectors per each particle pair + Lorenz invariant particle interactions

$$m_{ij}^l = \phi_e\left(h_i^l, h_j^l, \psi(\|x_i^l - x_j^l\|^2), \psi(\langle x_i^l, x_j^l \rangle)
ight)$$

JHEP 07, 30 (2022)

Lorentz Group Equivariant Block (LGEB)

Model	Faujuarianco	Time on CPU	Time on GPU	# D oroma	
Model	Equivariance	$({ m ms/batch})$	(ms/batch)	#r arams	
ResNeXt	×	5.5	0.34	1.46M]
P-CNN	×	0.6	0.11	348k	
PFN	×	0.6	0.12	82k	
ParticleNet	×	11.0	0.19	366k	
EGNN	E(4)	30.0	0.30	222k	
LGN	$SO^{+}(1,3)$	51.4	1.66	4.5k	
LorentzNet	$SO^{+}(1,3)$	32.9	0.34	224k	

	Training Fraction	Model	Accuracy	AUC	$1/arepsilon_B \ (arepsilon_S=0.5)$	$1/arepsilon_B \ (arepsilon_S=0.3)$
_	0 507	ParticleNet	0.913	0.9687	77 ± 4	199 ± 14
Data	0.370	LorentzNet	0.929	0.9793	176 ± 14	562 ± 72
efficiency	1%	ParticleNet	0.919	0.9734	103 ± 5	287 ± 19
chiefency		LorentzNet	0.932	0.9812	209 ± 5	697 ± 58
	5%	ParticleNet	0.931	0.9807	195 ± 4	609 ± 35
		LorentzNet	0.937	0.9839	293 ± 12	1108 ± 84

arXiv.2208.07814

JHEP 07, 30 (2022)

Away from supervision

- Most of the tasks in HEP are supervised, i.e. ground truth labels or values are given to guide the learning
 - signal = 1 vs. background = $0 \rightarrow$ classification
 - target = observable (e.g. the Higgs mass) \rightarrow regression
- Novel **unsupervised** approaches being explored for new physics searches
 - fully data driven
 - no signal prior
- The anomaly detection approach:
 - identifying rare events in data sets which deviate significantly from the majority of the data and do not conform to "normal" behaviour
 - normal behaviour can be learnt through a NN

How do we learn the normal behaviour?

Anomaly detection for jets

e.g, jet images

loss = $||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$

- One of the first applications was for signal-independent jet tagging using images
- Recently also point-cloud AE architectures were studied [see <u>2212.07347</u>]

[*] Heimel et al.: <u>SciPost Phys. 6, 030 (2019</u>), Farina et al.: <u>Phys. Rev. D 101, 075021 (2020</u>)

Apply to the analysis

- Many different strategies studied but no single strategy has emerged as the most universally powerful → big community effort!
- CMS and ATLAS analyses using these techniques are now emerging and growing in number [2306.03637, 2005.02983, CERN-EP-2023-112]
- Many challenges still remain, e.g.:
 - training setup (e.g., avoid spurious correlations resulting in "fake" anomalies)
 - incorporate physics knowledge w/o loosing generalizability to unknown physics
 - extension to more complex final states
 - hard to find a control region to test robustness
 - anomalies interpretations

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M. Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D. A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19} Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26} Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin,¹⁶ Jean-Roch Vlimant,²⁹ Daniel Williams,⁹ Mikaeel Yunus¹⁸

More AI = less interpretability?

- When studying the universe, physicists do not just want the facts, but want to understand why things work the way they do
- Similarly AI demands explanation, not just accurate predictions
 - how did it solve the problem
 - does the solution make sense
- Major challenge for interpretability of ML models comes their strength: the ability to non-parametrically describe non-linear functions of high-dimensional data
 - with unconstrained functional form ability to discover unexpected strategies but also cloaks the learned strategy within a black box
- One could open the box but challenging to extract insights from thousands of nodes and their millions connections

More AI = less interpretability?

- In simple cases (using expert level features), drop an input feature or decorrelate the model from feature to find feature importance
- For unstructured data like images, new approaches being developed to tackle this crucial problem although still a relatively limited efforts expected to grow
 - embedding physics laws (symmetries and/or theoretical constraints) [previous slides]
 - construct provably monotonic w.r.t. some features [2112.00038]
 - project metrics on already-identified physical observables
 - assemble a complete basis of interpretable observables and map the black box into that space [2010.11998]

Example [2010.11998]: Automated way to find a set of high level features [EFPs] that include all the information a CNN is implicitly learning from raw calorimeter images

How to deal with uncertainties?

- Power of AI comes from finding subtle non-linear patterns in training data this also makes it more susceptible to discrepancies between simulation and data
- A wide variety of techniques have been developed to quantify uncertainties as propagated through machine learning models
 - decorrelation
 - data augmentation
 - conditioning
- Opportunity: ML unlocks completely new methods to tackle uncertainties in a way classical methods could not → back port to traditional algorithms?
 - eg., more robust ML-based background estimation

Adversarial decorrelation

 $L_{Classifier} = L_{Classification} - \lambda \cdot L_{Adversary}$

arXiv.1611.01046

ML for fast simulation

CERN-LHCC-2020-015

from D. Shih at Snowmass 2021 (Seattle)

Accelerating simulation with ML

- Many different approaches being explored but no one has emerged yet as the final solution:
 - Variational Autoencoders
 - Generative Adversarial Networks
 - Normalizing Flows
 - Diffusion models
- Impressive effort to tackle major challenges of obtaining high-fidelity and computationally efficient models

https://calochallenge.github.io/

See summary at ML4Jets 2023

Towards foundation models

- A foundation model is a large ML model trained on a vast quantity of data such that it can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, ...)
 - self-supervised learning: use the data itself to create training objective
 - **outputs:** powerful representations usable in other tasks

reusable — one backbone used for several tasks

train on huge real data – leverage experimental data

leverage multi-modal methods – combine data from different detectors to address more complex tasks **uncertainty reduction** – reduce dependence on simulation-based training

Towards foundation models

- A foundation model is a large ML model trained on a vast quantity of data such that it can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, ...)
 - self-supervised learning: use the data itself to create training objective
 - **outputs:** powerful representations usable in other tasks

Brings new challenges, adaptation from language & vision not always direct, lost of space to explore for development in HEP

Computing aspects

- Deploying AI in production for experiments requires increasingly computing resources
- CPU-based computing suboptimal with the growth of models and data complexity
- Need specialized hardware as well as AI-hardware/software empowered infrastructures and tools for computing (edge, local, and cloud)
 - the ability to exploit new generation AI hardware can really boost the exploration and adoption of ML-based solutions

offline computing

real-time processing

Bring ML models to hardware for real-time AI high level synthesis for machine learning

A codesign tool to build ML models with hardware in mind and providing efficient platforms for programming the hardware.

Real-time AI

- Port ML to real-time data processing systems for smarter data reduction
 - eg., can do sophisticated event-level or particle-level reconstruction and identification already on hardware in first level of trigger systems
- Port ML to detector front-end electronics for smarter data compression

Quantization-aware training

- Efficient hardware implementation uses reduced precision wrt floating point
- Post-training quantization can affect accuracy
 - for a given bit allocation, the loss minimum at floating-point precision might not be the minimum anymore
- One could specify quantization while look for the minimum
 - maximize accuracy for minimal FPGA resources
- Workflow: quantization-aware training with <u>Google QKeras</u> and firmware design with <u>hls4ml</u> for best NN inference on FPGA performance

Summary and outlook

- Machine Learning has developed into a powerful set of statistical methods that have influenced nearly every aspect of high-energy physics
 - while covering only a subset of applications in this talk the main message is that **with ML we can do more with less**
 - new approaches and applications, new human-unknown patterns, more automatization and thus accelerated time to discovery!
- Our unique challenges need new expertise, knowledge, and resources
- How do we capture interest of non HEP collaborators?
 - Straightforward way: the physics mission is beautiful and engaging
 - Find unique aspects for our science that could push the bounds of ML research