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What we know
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The Standard Model

The last missing piece, 
discovered in 2012 at the LHC!

General relativity

The beginning of this century marked a big expansion of our knowledge of 
the Universe, from the very small to the very large scale



What we don’t know
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mM
r2

F = -G

Gravity not included  
in the theory

Baryon-antibaryon 
asymmetry?

Explains only 5% of the universe. 
No SM candidate  
for dark matter!

Neutrino masses



Big Science in 21st century

4

Probing the fundamental structure of nature  
requires complex experimental devices, large infrastructures 
and big collaborations.

The Large Hadron  
Collider

LIGO/VIRGO interferometers

Vera C. Rubin Observatory
CMB-S4

The DUNE neutrino experiment



Big Science = Big Data
• Increasingly complex data both in volume and  

dimensionality 

• Increasing need for efficient and accurate data  
processing for high-throughput applications 

• Challenge in simulating expectations for what  
experiments may observe 

• But also need for innovative data & discovery 
driven physics analyses approaches

5Sloan Digital Sky Survey Interactions in LArTPC A LHC collision

https://a3d3.ai/



This talk
• In this era of science Artificial Intelligence can greatly accelerate time to discovery as 

well-suited for efficient analysis of large amounts of highly-dimensional data to find 
subtle patterns 

• With such capability it will allow us 
- enhance control and operations of detectors  

and accelerators 
- automate online and offline experimental  

workflows 
- save and maximize potentially lost data 
- accelerate detector R&D 
- and therefore, test hypotheses  

significantly faster
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Machine Learning in HEP
• ML is used in particle physics since the ‘80s 

Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery) 

• Over the last decade a rapid progress has led to a revolution in this area 
Take advantage of industry breakthrough in deep learning and computing hardware
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Measurement of neutrino  
oscillation parameters @ NovA

Phys. Rev. Lett. 118, 231801 (2017)

JHEP 12 (2020) 085

https://www.sciencedirect.com/science/article/pii/S037026932030229X?via=ihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.231801
https://link.springer.com/article/10.1007/JHEP12(2020)085


What changed?
• Consider a typical data reduction workflow in place to deal with a high volume of data 

• Let’s take LHC as an example…
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Collision frequency: 40 MHz 
Particles per collision: O(103) 
Detector resolution: O(108) channels

Extreme data rates of ~PB/s!

Big Data @ the Energy Frontier
The Large Hadron Collider (LHC)



What changed?
• Consider a typical data reduction workflow in place to deal with a high volume of data 

• Let’s take LHC as an example…
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What changed?
• Consider a typical data reduction workflow in place to deal with complex data 

• Let’s take LHC as an example… 

• This worked well… but can fail when patterns are even more subtle and rare
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What patterns are we washing out here?
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108 103 100 50 1

• Go back looking at the source highly dimensional data:  
did we miss something through expert-level data reduction algorithms? 

• An AI could efficiently analyze these data and we can check, as experts, what the 
answer is: does AI match our expectations and/or does it teach us something new?



From expert-level features to raw data
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A shallow neural network

A deep neural network



Data representation: which one?
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High level/no structure: 
fully connected NN

Ordered sequence/time series: 
recurrent NN

Regular grid: convolutional NN

Point cloud: 
Deep Sets & Graph NN

As in natural language processing

As in computer vision

As in social media analysis



The role of inductive bias
• Incorporating domain knowledge into ML (inductive bias) can provide better accuracy, 

training/inference efficiency, smaller model size, interpretability and robustness

15https://samiraabnar.github.io/articles/2020-05/indist

https://samiraabnar.github.io/articles/2020-05/indist


Example: Convolutional NN
• CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the 

image data in computer vision tasks 

• Leverage spatial symmetries (translation invariance and equivariance) to achieve higher 
accuracy at lower computational cost wrt fully connected NNs 

- intelligent feature (patterns) extraction from raw pixel-level high-dimensional data 

- dramatic reduction in number of parameters

16
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Example: Convolutional NN

• Well suited for experimental data that come  
naturally as regular grid like images from  
LArTPC detectors 

- electrons produced by charged particles  
interacting with a large multiple-cubic meters  
volume of LAr 

- continuous stream of 3D images of detector  
volume yielding a high-resolution “video”

17



Example: Convolutional NN
• MicroBooNE was the first LArTPC (170 ton) to deploy CNNs 

to solve otherwise technically challenging tasks: 

- event classification [1611.05531] 

- particle ID [1611.05531, 1808.07269, 2010.08653, 2012.08513] 

- region-of-interest detection [1611.05531]
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https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1808.07269
https://arxiv.org/abs/2010.08653
https://arxiv.org/abs/2012.08513
https://arxiv.org/abs/1611.05531


Big data @ the Intensity Frontier
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The Deep Underground Neutrino Experiment (DUNE)

• Next generation neutrinos oscillation experiment now under construction and R&D to 
start operations in late 2020s 

• Massive far detector 1 mile underground comprising 70k tons of LAr and advanced 
technology to record neutrino interactions with extraordinary precision 

• Uncompressed continuous readout of modules will yield O(10 Tb/s) → unprecedented 
for this type of experiment!



From images to point cloud
• Experimental data are not always arranged as a regular grid-like structure 

- a heterogenous detector can provide high-resolution data on different information types

20

Jet reconstruction in CMS 

27 11 Aug 2015 Andreas Hinzmann 
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• Experimental data are not always arranged as a regular grid-like structure 

• How do these data look like?  
- Distributed unevenly in space 

- Sparse 

- Heterogenous 

- Variable size 

- No defined order 

- Interconnections 

• A point cloud representation provides 
the required flexibility 

• Graph Neural Networks architectures 
can be designed that leverage 
physics laws → inductive bias 

- permutation invariance/equivariance 

- symmetry group equivariance 
 

From images to point cloud
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arXiv.2203.12852

https://arxiv.org/abs/2203.12852


Graph NNs in HEP
• Represent objects as points with pairwise relationships 

• Effectively capture complex relationships and dependencies between objects of many 
different kinds in HEP 

- energy deposits, individual physics objects, individual particles, heterogenous information 

• Applications and architectures keep successfully growing!

22arXiv.2007.13681arXiv.2203.12852

https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2203.12852


Physics-informed ML
• Target applications of ML in HEP often have specific features such as symmetries, 

invariances/equivariances unique to our field 

• Developing physics-specific solution can lead to improved performance 

• A growing effort to design and study architectures with injected symmetries  

• Dedicated NNs have been proposed such as to be invariant/equivariant to certain 
symmetries, e.g.: 

- permutations 

- boost on z-axis,  
rotation on x-y plane 

- rotation on the η–φ plain 

- boost along the “jet axis” 

- full Lorentz transformations

23arXiv.2208.07814

https://arxiv.org/abs/2208.07814


Example: jet tagging
• Identification of jets arising from hadronization of boosted  

W/Z/H/top is a key task in LHC physics: 

- new physics searches, standard model measurements, higgs sector 

- unique signature from hadrons merging in single jet  
with substructure 

- exploit to suppress overwhelming background from multijet  
processes in most sensitive all-hadronic and semi-leptonic  
channels 

• A topic of interest in both theory and experiment communities  
since ~ 30 years 

• Recent years advancement in ML enabled more powerful algorithms (graph NNs, 
transformers, …)
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ex: Graviton or Radion 
production

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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Example: jet tagging
• Invariance under a Lorentz boost along the beam axis (z-boost) has been obtained in the 

past through input preprocessing 

• In this case the jet is conventionally represented as a set of particles with relative 
coordinates Δη/Δϕ w.r.t. jet axis

25



Example: jet tagging
• Jet is represented as a set of particles with relative coordinates Δη/Δϕ w.r.t. jet axis 

- after pre-processing, we still have four additional DoFs for Lorentz transformation! 

• A NN that respects Lorentz symmetry outputs a score that is invariant under any Lorentz 
transformation of the input jet 

• A solution: design a dedicated structure to maintain invariant/equivariant

26
JHEP 07, 30 (2022)

LorentzNet: 
Physics-informed graph edge features 
given by the Minkowski inner product of 
two 4-vectors per each particle pair + 
Lorenz invariant particle interactions

https://link.springer.com/article/10.1007/JHEP07(2022)030


Example: jet tagging

27

arXiv.2208.07814

JHEP 07, 30 (2022)

Data 
efficiency

https://arxiv.org/abs/2208.07814
https://link.springer.com/article/10.1007/JHEP07(2022)030


Away from supervision
• Most of the tasks in HEP are supervised, i.e. ground truth labels or values are given to 

guide the learning 

- signal = 1 vs. background = 0 → classification 

- target = observable (e.g. the Higgs mass) → regression 

• Novel unsupervised approaches being explored for new physics searches 

- fully data driven 

- no signal prior 

• The anomaly detection approach: 

- identifying rare events in data sets which deviate  
significantly from the majority of the data and do  
not conform to “normal” behaviour 

- normal behaviour can be learnt through a NN

28
How do we learn the normal behaviour?

outliers 
or anomalies



Anomaly detection for jets

29

e.g, jet images e.g, jet images

• One of the first applications 
was for signal-independent  
jet tagging using images 

• Recently also point-cloud AE 
architectures were studied 
[see 2212.07347]

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct
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Lreco > Lcut

[*] Heimel et al.: SciPost Phys. 6, 030 (2019) , Farina et al.: Phys. Rev. D 101, 075021 (2020)

better

https://arxiv.org/abs/2212.07347
https://scipost.org/10.21468/SciPostPhys.6.3.030
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021


Apply to the analysis
• Many different strategies studied but no single strategy has emerged as the most 

universally powerful → big community effort! 

• CMS and ATLAS analyses using these techniques are now emerging and growing in 
number [2306.03637, 2005.02983, CERN-EP-2023-112] 

• Many challenges still remain, e.g.: 

- training setup (e.g., avoid spurious correlations  
resulting in “fake” anomalies) 

- incorporate physics knowledge w/o loosing  
generalizability to unknown physics 

- extension to more complex final states 

- hard to find a control region to test  
robustness 

- anomalies interpretations

30
arXiv.2101.08320

https://arxiv.org/abs/2306.03637
https://arxiv.org/abs/2005.02983
http://cds.cern.ch/record/2863895
https://arxiv.org/abs/2101.08320


More AI = less interpretability?
• When studying the universe, physicists do not just want the facts, but want to understand 

why things work the way they do 

• Similarly AI demands explanation, not just accurate predictions 

- how did it solve the problem 

- does the solution make sense 

• Major challenge for interpretability of ML models comes their strength: the ability to 
non-parametrically describe non-linear functions of high-dimensional data 

- with unconstrained functional form ability to discover unexpected strategies but also cloaks 
the learned strategy within a black box 

• One could open the box but challenging to extract insights from thousands of nodes 
and their millions connections 

31



More AI = less interpretability?
• In simple cases (using expert level features), drop an input feature or decorrelate the 

model from feature to find feature importance 

• For unstructured data like images, new approaches being developed to tackle this crucial 
problem although still a relatively limited efforts expected to grow 

- embedding physics laws (symmetries and/or theoretical constraints) [previous slides] 

- construct provably monotonic w.r.t. some features [2112.00038] 

- project metrics on already-identified physical observables 

- assemble a complete basis  
of interpretable observables  
and map the black box into  
that space [2010.11998]

32

Example [2010.11998]: Automated 
way to find a set of high level features 
[EFPs] that include all the information 
a CNN is implicitly learning from raw 
calorimeter images

https://arxiv.org/abs/2112.00038
https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2010.11998


How to deal with uncertainties?
• Power of AI comes from finding subtle non-linear patterns in training data — this also 

makes it more susceptible to discrepancies between simulation and data 

• A wide variety of techniques have been developed to quantify uncertainties as 
propagated through machine learning models 

- decorrelation 

- data augmentation 

- conditioning 

• Opportunity: ML unlocks completely new methods to tackle uncertainties in a way 
classical methods could not → back port to traditional algorithms? 

- eg., more robust ML-based background estimation

33



Adversarial decorrelation

34

Popular approach based on the idea 
of decorrelating from specific 
nuisance parameters Z: 

e.g., through adversarial training

arXiv.1611.01046

https://arxiv.org/abs/1611.01046


ML for fast simulation

• HEP experiments rely heavily on simulations from  

experimental design all the way to data analysis 

• Detector simulation (GEANT4) and event 
generation (MG5, Pythia, Herwig, …) are major 
and growing bottlenecks at LHC and other 
experiments

35from D. Shih at Snowmass 2021 (Seattle)

CERN-LHCC-2020-015

https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://cds.cern.ch/record/2729668


• Many different approaches being explored but no one has emerged yet as the final 
solution: 

- Variational Autoencoders 

- Generative Adversarial Networks 

- Normalizing Flows 

- Diffusion models 

•Impressive effort to tackle major challenges of obtaining 
high-fidelity and computationally efficient models

Accelerating simulation with ML

36

https://calochallenge.github.io/ See summary at ML4Jets 2023

https://calochallenge.github.io/homepage/
https://indico.cern.ch/event/1253794/contributions/5588599/


• A foundation model is a large ML model trained on a vast quantity of data such that it 
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, …) 

- self-supervised learning: use the data itself to create training objective 

- outputs: powerful representations usable in other tasks

Towards foundation models

37

reusable — one backbone used for several tasks 

train on huge real data – leverage experimental data 

leverage multi-modal methods – combine data from different detectors to address more complex tasks 

uncertainty reduction – reduce dependence on simulation-based training

from M. Kagan at H&N 2023



• A foundation model is a large ML model trained on a vast quantity of data such that it 
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, …) 

- self-supervised learning: use the data itself to create training objective 

- outputs: powerful representations usable in other tasks

Towards foundation models

38

from M. Kagan at H&N 2023

Brings new challenges, 
adaptation from language & vision not always direct, 

lost of space to explore for development in HEP



Computing aspects
• Deploying AI in production for experiments requires increasingly computing resources 

• CPU-based computing suboptimal with the growth of models and data complexity 

• Need specialized hardware as well as AI-hardware/software empowered infrastructures 
and tools for computing (edge, local, and cloud) 

- the ability to exploit new generation AI hardware can really boost the exploration and 
adoption of ML-based solutions

39

offline computing real-time processing
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2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

Bring ML models to hardware for real-time AI

high level synthesis for machine learning

A codesign tool to build ML models with hardware in mind and providing 
efficient platforms for programming the hardware.

Many use cases in HEP and beyond… and still growing! 
(see Fast Machine Learning For Science Workshop Sep '23)

https://indico.cern.ch/event/1283970/


Real-time AI
• Port ML to real-time data processing systems for smarter data reduction 

- eg., can do sophisticated event-level or particle-level reconstruction and identification 
already on hardware in first level of trigger systems 

• Port ML to detector front-end electronics for smarter data compression
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Huge input data rates up to PB/s 

Latencies down to the ns 

Low resources 

Low power



Quantization-aware 
training
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• Efficient hardware implementation uses reduced 
precision wrt floating point 

• Post-training quantization can affect accuracy 

- for a given bit allocation, the loss minimum at 
floating-point precision might not be  
the minimum anymore 

• One could specify quantization while look  
for the minimum 

- maximize accuracy for minimal FPGA resources 

• Workflow: quantization-aware training with 
Google QKeras and firmware design with 
hls4ml for best NN inference on FPGA 
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2006.10159


Summary and outlook
• Machine Learning has developed into a powerful set of statistical methods that have 

influenced nearly every aspect of high-energy physics 

- while covering only a subset of applications in this talk the main message is that with ML we 
can do more with less 

- new approaches and applications, new human-unknown patterns, more automatization and 
thus accelerated time to discovery! 

• Our unique challenges need new expertise, knowledge, and resources 

• How do we capture interest of non HEP collaborators? 

- Straightforward way: the physics mission is beautiful and engaging 

- Find unique aspects for our science that could push the bounds of ML research 
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