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Graph-structured data
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Machine learning tasks on graph-structured data

Economic networks Power grid Social networks Molecules

Clustering Community detectionNode/link prediction Classification

Anticipating new 
partnerships

Segmenting highly-
connected zones

Marketing to like-
minded users

Predicting toxicity of 
compounds
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Graph Machine Learning with Quantum Computers
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Theoretical protocols
- Verdon, G., McCourt, T., Luzhnica, E., Singh, V., Leichenauer, S., & Hidary, J. 
(2019). Quantum graph neural networks. arXiv preprint arXiv:1909.12264.

- Schuld, M., Brádler, K., Israel, R., Su, D., & Gupt, B. (2020). Measuring the 
similarity of graphs with a Gaussian boson sampler. Physical Review A, 101(3), 
032314.

- Henry, L. P., Thabet, S., Dalyac, C., & Henriet, L. (2021). Quantum evolution 
kernel: Machine learning on graphs with programmable arrays of qubits. Physical 
Review A, 104(3), 032416.

Experiemental implementation on neutral atoms platforms

- Albrecht, B., Dalyac, C., Leclerc, L., Ortiz-Gutiérrez, L., Thabet, S. et al. (2023). 
Quantum feature maps for graph machine learning on a neutral atom quantum 
processor. Physical Review A, 107(4), 042615.

Schuld et al.

Albrecht et al.

These protocols work for graph level tasks (classification or regression)



Graph Neural Networks (classical)
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• Objective: learn representation of nodes (or edges) in a 
graph, with the use of neural networks. 

• Each node is associated at the end with a vector of 
dimension 𝑑.

• These vectors can be the input  of a machine learning 
algorithm. Can be used on many tasks.

• Can be done on one big graph, or several small graphs.
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Graph Convolution Networks layer
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Graph Transformers
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Node 
features

Graph

Edge 
features

⊕

⊕

Positional Encodings:
- Laplacian Eigenvectors
- Random Walk probabilities

⊕	concatenation

Augmented 
node 
features

Augmented 
edge 
features

- Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethinking graph transformers with spectral attention. NeurIPS 2021
- Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D. et al. Do transformers really perform bad for graph representation? arXiv 2021. arXiv:2106.05234.
- Rampášek, L., Galkin, M., Dwivedi, et al. (2022). Recipe for a general, powerful, scalable graph transformer. NeurIPS 2022
- Ma, L., Lin, C., Lim, D., Romero-Soriano, A. et al. (2023). Graph Inductive Biases in Transformers without Message Passing. arXiv:2305.17589.

Transformer 
model



Quantum correlations as graph features
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Quantum position encodings and aggregation
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Properties of our method
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• Learn a representation that can be reused on many tasks, graph level, node level etc

• Naturally equivariant by permuting the labeling of the nodes

• One can compute intractable features e.g correlation on ground state

• The quantum features can be adapted with new classical algorithms

Open questions:

- Are there learning tasks that for which quantum features bring a significant advantage ?
- Is this advantage worth the cost of running a quantum computer ?



Experiments
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Features on artificial datasets Benchmarks on real datasets

Class 0

Class 1
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