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Graph-structured data
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Machine learning tasks on graph-structured data

Economic networks Power grid Social networks Molecules

Clustering Community detectionNode/link prediction Classification

Anticipating new 
partnerships

Segmenting highly-
connected zones

Marketing to like-
minded users

Predicting toxicity of 
compounds
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Toxicity screening on a QPU
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Predictive Toxicity Challenge on Female Mice [1,2]

[1] Helma, et al., Bioinformatics, 01, 1, 107-108 (2001)
[2] Data taken from the GraKeL library

• First graph QML implementation on a real dataset of  such size. 

# of qubits

288 registers, 
up to 32 qubits

Global analog, 
constant pulses

~4 days continuous 
measurement

RuntimeControl# of registers
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Previous work about using quantum computing for graph 
classification
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Outline

I. Neutral atom Quantum Processing Units

III. Toxicity screening on a QPU

II. Graph Machine Learning with neutral atom 
QPUS
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Neutral atom Quantum 
Processing Units
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Spin out of IOGS:
Trapped Rb atoms in an array of 
optical tweezers1

—
1 Quantum computing with neutral atoms, Quantum 4, 327 (2020) 

0

2π

phase pattern

Barredo et al., Nature (2018)
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Using a SLM, one can reconfigure 
the geometry of the qubit register

Nogrette et al., PRX (2014)Vacuum 
system

SLM

Trapping atoms in vacuum

https://quantum-journal.org/papers/q-2020-09-21-327/


9

Processing quantum information

Register
loading

Initial	
image

Assembled	
image

Final	
image

Sub-register
Rearranging

Quantum
Processing	

Time
0

Register
readout

+ +

A B
𝑅	~ few µm

Jaksch et al., PRA (2000)
Saffman, RMP (2010)
Browaeys & Lahaye, Nat. Phys. (2020)

Qubit registers made of individual atoms
Rydberg interaction as entanglement 
resource
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Quantum resources can be used in two different modes:

M. Troyer (Microsoft), A. J. Daley (Strathclyde), I. Bloch (MPQ) and P. Zoller (Innsbruck), comparing the requirements to simulate the same quantum dynamics of a 10x10 2D
Hubbard model system using an analogue vs digital modes: with typical error level of 1% of the analogue mode à 106 gate operations are required with 1-F < 106

The Hamiltonian faithfully describes the dynamics of a physical system or the
constraints of an operational case. Parameters can be tuned continuously.

Elementary operations are discrete digital quantum gates, that can act either
on individual qubits, or on several qubits at the same time.

𝐻 =#
!

[ℏ𝛿(𝑡) 𝜎!" + ℏ𝛺(𝑡) 𝜎!#] +#
$,!

𝑈$,! 𝜎$"𝜎!"

ANALOG CONTROL
programming a Hamiltonian sequence

DIGITAL CONTROL
programming a quantum circuit with digital quantum gates

Two controls modes
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Graph Machine 
Learning with neutral 
atom QPUs
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Using the quantum dynamics to embed the data
The quantum dynamics is expected to introduce a richer feature map, with characteristics that are hard to 
access for classical methods
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Quantum feature map
The graph topology is encoded in the dynamics 
through the Hamiltonian of the system

𝐺 = (𝑉, 𝐸)

𝐻! ∼

Creates an edge if 𝑟!" < 𝑟#

*
!," ∈&

𝐶'
𝑟!"'
𝑛!𝑛"

The measurement histograms enable us to build a 
similarity measure between graphs

Number of excitations

Number of excitations

Henry, L. P., Thabet, S., Dalyac, C., & Henriet, L. (2021). Quantum evolution kernel: Machine 
learning on graphs with programmable arrays of qubits. Physical Review A, 104(3), 032416.



Distinguishing graphs with quantum dynamics
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Interactions induce graph-dependent quantum dynamics

time
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Toxicity screening 
experiment 
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1

Chemical compounds in PTC-FM
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1

5.5um

Chemical compounds in PTC-FM



Batching atomic registers 
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Changing trap layout is resource consuming → Do several registers with one layout

𝐺&

𝒓(𝐺&)

𝐺'

Mapping
to underlying 
triangular pattern

Batching and keeping 
only traps used at least once

⋯

⋯
Graphs

Registers

𝒓(𝐺')
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1

Large atom number registers

𝑅 = 5.5𝜇𝑚
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2

Experimental results on par with classical kernel

Classification results on par with the best 
classical kernels on this dataset
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Assessing the general potential of QEK

We use the recently introduced geometric 
difference [1].

Strong evidence that the quantum feature map perceives data in an original way, which is hard to replicate using classical kernels

[1]  Huang, et al., Nature Communications 12, 1, 2631 (2021)

• Small g12 (wrt sqrt size of the dataset) à no underlying function mapping the data to the targets such that K1 
outperforms K2

• Large g12 (wrt sqrt size of the dataset) à such a map exists. 



Performance of QEK 
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Synthetic dataset

QEK
(layer)

For 0.1 ≤ 𝑝 ≤ 0.2 ⟹ QEK (layer) performs better than class.

• 𝑝 = 0 ⟹ 𝐴 = Hexagon, 𝐵 = Kagome ⟹	Easy to distinguish
• 𝑝 → 1 ⟹ A ≈ 𝐵 ⟹ Impossible to disPnguish

Henry, L. P., Thabet, S., Dalyac, C., & Henriet, L. (2021). Quantum evolution kernel: Machine 
learning on graphs with programmable arrays of qubits. Physical Review A, 104(3), 032416.
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Thanks for your attention

slimane.thabet@pasqal.com
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