

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Variational quantum algorithms implemented on a general-purpose single-photon-based quantum computing platform

Alexia Salavrakos

QTML - 22 November 2023

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

2

About Quandela

Founded in 2017 Spin off from Pascale Senellart's group at C2N (CNRS & Paris-Saclay University)

Today:

80 people, with >50 scientists and engineers New funding round announced on November 7

Quandela Scientific Advisory Board

C2N - Palaiseau

Massy

IPVF - Palaiseau

Massy

NFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

3

Collaboration between many teams

A general-purpose single-photon-based quantum computing platform

Nicolas Maring,¹ Andreas Fyrillas,^{1,*} Mathias Pont,^{1,2,*} Edouard Ivanov,^{1,*} Petr Stepanov,¹ Nico Margaria,¹ William Hease,¹ Anton Pishchagin,¹ Thi Huong Au,¹ Sébastien Boissier,¹ Eric Bertasi,¹ Aurélien Baert,¹ Mario Valdivia,¹ Marie Billard,¹ Ozan Acar,¹ Alexandre Brieussel,¹ Rawad Mezher,¹ Stephen C. Wein,¹ Alexia Salavrakos,¹ Patrick Sinnott,¹ Dario A. Fioretto,² Pierre-Emmanuel Emeriau,¹ Nadia Belabas,² Shane Mansfield,¹ Pascale Senellart,² Jean Senellart,¹ and Niccolo Somaschi¹

> ¹Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France ²Centre for Nanosciences and Nanotechnologies, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France (Dated: June 2, 2023)

arXiv:2306.00874

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Many of us are used to working with kets $|\psi\rangle$ and matrices U...

How do we implement protocols in practice?

What are the challenges that can arise?

Outline

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

- 1. Experimental setup
- 2. Photonic quantum computing
- 3. Demonstrations of variational quantum algorithms

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

NFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

8

FIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

9

Photon source

In micropillar cavity

10

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Photon source

Quantum dot

In micropillar cavity

QUANDELA Demultiplexer

11

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

QUANDELA Demultiplexer

12

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure

QUANDELA Photonic circuit

13

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

QUANDELA Photonic circuit

14

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

12 x 12 fully reconfigurable universal interferometer

15

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

16

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Computation process

Software package for discrete variable linear optics

Single-photon and coincidence counts

17

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Compilation and transpilation

18

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Computation process

Single-photon and coincidence counts

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Photonic quantum computing

20

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Computation models

We are used to the qubit quantum circuit model, especially in QML

M. Cerezo et al. Nature Reviews Physics 3, 625-644 (2021)

DNFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

21

Computation models

We are used to the qubit quantum circuit model, especially in QML

M. Cerezo et al. Nature Reviews Physics 3, 625-644 (2021)

How do we proceed with photonic hardware?

22

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Linear optics framework

 $|n_1, n_2, \dots, n_i, \dots, n_m\rangle$ Fock state with n_i photons in mode i

Beamsplitter

 $\begin{bmatrix} e^{i(\phi_{tl}+\phi_{tr})}\cos\left(\frac{\theta}{2}\right) & ie^{i(\phi_{bl}+\phi_{tr})}\sin\left(\frac{\theta}{2}\right)\\ ie^{i(\phi_{tl}+\phi_{br})}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi_{bl}+\phi_{br})}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}$

Phase shifter

 $\left[e^{i\phi}\right]$

+ source and detectors

Recall: used in Boson Sampling (Aaronson and Arkhipov, #P hard)

NFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

23

Linear optics framework

 $|n_1, n_2, \dots, n_i, \dots, n_m\rangle$

Beamsplitter

 $\begin{bmatrix} e^{i(\phi_{tl}+\phi_{tr})}\cos\left(\frac{\theta}{2}\right) & ie^{i(\phi_{bl}+\phi_{tr})}\sin\left(\frac{\theta}{2}\right) \\ ie^{i(\phi_{tl}+\phi_{br})}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi_{bl}+\phi_{br})}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}$

+ source and detectors

Recall: used in Boson Sampling (Aaronson and Arkhipov, #P hard)

W. R. Clements et al. *Optica* 3, 12 (2016) M. Reck et al. *Physical Review Letters* 73, 58 (1994)

DNFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

24

Photon number resolution

Detectors: ideally photon number resolving

Output states such as |0210301>

Current technology: threshold detectors

Indicates click or no click

Output states such as $|0110101\rangle$

25

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Pseudo photon number resolution

As a temporary solution we can use **pseudo PNR**

PPNR: use additional modes and detectors and redirect photons through beamsplitters

Define mapping

11100000000	\rightarrow	00300000000
101001000000	\rightarrow	002001000000
100011000000	\rightarrow	001011000000

...

26

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Pseudo photon number resolution

As a temporary solution we can use **pseudo PNR**

PPNR: use additional modes and detectors and redirect photons through beamsplitters

Define mapping

111000000000	\rightarrow	00300000000
101001000000	\rightarrow	002001000000
100011000000	\rightarrow	001011000000

...

27

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Pseudo photon number resolution

As a temporary solution we can use **pseudo PNR**

PPNR: use additional modes and detectors and redirect photons through beamsplitters

Define mapping

111000000000	\rightarrow	00300000000
101001000000	\rightarrow	002001000000
100011000000	\rightarrow	001011000000

28

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Qubits and logical gates with linear optics

Dual rail

 $|1\rangle_{qubit} \coloneqq |0,1\rangle$

One qubit gates

 $|0\rangle \rightarrow |0\rangle + |1\rangle$

LITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

29

Qubits and logical gates with linear optics

However, some two-qubit gates cannot be achieved deterministically with passive linear optics

Options:

- Nonlinearities (materials unavailable)
- Post-selection (probabilistic)
- Heralding (probabilistic)
- Feedforward

Example: post-selected CNOT gate

Ralph, Timothy C., et al. *Physical Review A* 65.6 (2002): 062324.

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

30

Approaches on our device

Qubit circuit based

Dual rail encoding 1007 = 110107 1100/1007 Post-selected output 1117 = 101017

31

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Challenges - algorithms

Post-selected gates: non-deterministic computation

PNR detectors not yet available: reduced output space

Optimization in QML: little research in parameter shift rules for linear optics

32

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Challenges - hardware

Photon loss is main source of noise: total efficiency 8%

Indistinguishability of the photons: $\sim 94\%$

Single-photon purity: > 99%

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

33

Approaches on our device

Qubit circuit based

Variational quantum eigensolver

Photonic native

Variational quantum classifier

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

VQE experiment

35

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

VQE results

We consider the H2 molecule with effective Hamiltonian $\hat{H} = \alpha \mathbb{II} + \beta \mathbb{ZI} + \gamma \mathbb{IZ} + \delta \mathbb{ZZ} + \mu XX$

Circuit prepares an ansatz state of two qubits:

- dual rail encoding
- post-selected CNOT gate

Error mitigation scheme inspired from D. Lee et al. *Optica* 9, 88-95 (2022)

36

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

VQE results

ONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Variational quantum classifier

38 tion is intended solely for the addressee and may cor

COPVRIGHT - Any reproduction of the images contained in this

Variational quantum classification algorithm

Fock-space based classifier proposed in [1]

[1] B. Y. Gan, D. Leykam, and D. G. Angelakis. *EPJ Quantum Technol*. 9, 16 (2022)

Resulting model:

$$f^{(n)}(x, \boldsymbol{\Theta}, \boldsymbol{\lambda}) = \left\langle \mathbf{n}^{(i)} \middle| \begin{array}{c} \mathcal{U}^{\dagger}(x, \boldsymbol{\Theta}) \mathcal{M}(\boldsymbol{\lambda}) \mathcal{U}(x, \boldsymbol{\Theta}) \middle| \mathbf{n}^{(i)} \right\rangle$$

Unitary from the circuit

Observable

Defined in Fock space:

$$\left|\mathbf{n}^{(i)}\right\rangle = \left|n_{1}^{(i)}, n_{2}^{(i)}, \dots, n_{m}^{(i)}\right\rangle$$

39

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Variational quantum classification algorithm

40

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Variational quantum classifier: results

Classifying Fisher's iris dataset:

- 150 data points
- 4 dimensions
- 3 classes

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Conclusions

he contents of this presentation is intended solely for the addressee and may contain

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

42

Highlights

• First device of its kind based on single photons

• Available online on the cloud

- Versatility:
 - VQA demonstration
 - Benchmarking
 - Other protocols

arXiv:2306.00874

CE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

43

Open questions and future work

Experimental directions:

- Near term optimization of each component in setup
- PNR detectors
- Towards measurement based QC
 - GHZ state generation
 - Linear cluster states directly from the source [1]

Module	Transmission/Efficiency	Near-term targets
First lens brightness	55%	80% [69]
Single-mode fiber coupling	70%	85% [70]
Spectral Filtering module	75%	>82%[*]
Demultiplexer	70%	>80%[*]
PIC insertion and transmission	45 %	70% [71]
SNSPDs	92%	$>95\%[^{**}]$
Total	$8.4 \pm 0.2\%$	27%
Pump laser repetition rate	80 MHz	320 MHz [72]
6-photon countrate	$4\mathrm{Hz}$	\sim 35 kHz (computed)
12-photon countrate	200 nHz (computed)	$\sim 10 \mathrm{Hz}$ (computed)

44

INFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Open questions and future work

Experimental directions:

- Near term optimization of each component in setup
- PNR detectors
- Towards measurement based QC
 - GHZ state generation
 - Linear cluster states directly from the source [1]

Variational algorithms:

- Optimization and gradient evaluation
- Compilation of qubit circuits to photonic circuits
- Inductive bias of linear optics?

A		
Module	Transmission/Efficiency	Near-term targets
First lens brightness	55%	80% [69]
Single-mode fiber coupling	70 %	85% [70]
Spectral Filtering module	75%	>82%[*]
Demultiplexer	70%	>80%[*]
PIC insertion and transmission	45 %	70% [71]
SNSPDs	92%	>95%[**]
Total	$8.4 \pm 0.2\%$	27%
Pump laser repetition rate	$80\mathrm{MHz}$	320 MHz [72]
6-photon countrate	$4\mathrm{Hz}$	\sim 35 kHz (computed)
12-photon countrate	200 nHz (computed)	$\sim 10 \mathrm{Hz}$ (computed)

NTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

45

Open positions and access to cloud

QUANDELA

Research Scientist (Theory of Quantum Devices)

Paris, Île-de-France, France · R&D - Quantum Theory & Algorithms · Full time

Research Internship - Theory

Massy, Île-de-France, France · R&D - Quantum Theory & Algorithms · Temporary

https://apply.workable.com/quandela/

QUANDELA Cloud

Making the future of computing brighter

2	Equital Viole resulting Stee shelf-for an onling included of sequelar-strait will a set of scalar studies. Set Scalar d Resplit consecute line field statis when one architector are prime gatherinate;
	1 satisfiam (R) compared is traing any absence in made 2 and no absence made 1 mean the summanding Pask stars in 3. R) + antides: gette care a compared to taming in photos it model, and any absence in mode 3, the semagoriding Pask stars in (R).
	Dis.
	 Requiring one fails are bein any set in revealed is as whit care in early all white information is \$28 where substance are in set 0 and explore that 1.
C Auris	Man prevals, and said their a supposition of fact same (A, C, and (A, B) sam he approaches a galations)
	Pelarisation Moder exceeding v
	4 Analysis introduce signify, and good a process of other workshold water process of the plate in the plat
-	Mechanisms characterized and ended on the solution of \$4,2() transition with a native the productive trait. We would with preventions (\$4, (\$2, \$2, \$2, \$2))
	 and sim W connects (CPa), but (P. 27). adds properties for other second and promite source Particle state and a second sec
	Pass.
	In an interaction memory of a main memory over their data on the associate with a path size, a maintenant memory the kills are memory with a significant or memory data and the size of th
	Simulation and Sampling
Annual and a state	Evolve is particle limit (which wave measured assists heterogic with sphthaling as Acoustic approximation of the approximation of an approximation of the participation of the evolution of the start of the device an approximation of the an approximation of the device approximation of the approximatio

Discover photonic quantum computing

Experiment on photonic quantum computing on notebooks developed by our quantum scientists and showing state of the art algorithms for photonics

Quandela's cloud-based platform gives you access to photonic quantum computing, enabling you to develop and deploy algorithms that optimise solutions.

https://cloud.quandela.com/

https://perceval.quandela.net/

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contai confidential and/or privileged information and may be legally protected from disclosure

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Appendix

FIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

47

Hybrid architecture proposal: SPOQC

A Spin-Optical Quantum Computing Architecture

Grégoire de Gliniasty,^{1,2,*} Paul Hilaire,^{1,*} Pierre-Emmanuel Emeriau,¹ Stephen C. Wein,¹ Alexia Salavrakos,¹ and Shane Mansfield¹ ¹Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France ²Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

INFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

48

VQE error mitigation scheme

Error mitigation scheme inspired from [1]

State preparation and measurement (SPAM) errors

Correct probability distribution $q = \Gamma_b p$

Evaluate right before experiment $(\Gamma_b)_{ij} = |\langle \psi |_i^b b | \psi \rangle_j^b |^2$

 $\Gamma_{ZZ} = \begin{bmatrix} 9.99999952e - 01 & 3.09568451e - 02 & 3.09568451e - 02 & 1.54929555e - 09 \\ 2.34741773e - 08 & 9.38086308e - 01 & 1.45337301e - 09 & 2.34741773e - 08 \\ 2.34741773e - 08 & 1.45337301e - 09 & 9.38086308e - 01 & 2.34741773e - 08 \\ 1.54929555e - 09 & 3.09568451e - 02 & 3.09568451e - 02 & 9.99999952e - 01 \end{bmatrix}$ $\Gamma_{XX} = \begin{bmatrix} 9.99999951e - 01 & 2.47148265e - 02 & 2.47148265e - 02 & 1.24580719e - 09 \\ 2.39578331e - 08 & 9.50570344e - 01 & 1.18422748e - 09 & 2.39578331e - 08 \\ 2.39578331e - 08 & 1.18422748e - 09 & 9.50570344e - 01 & 2.39578331e - 08 \\ 1.24580731e - 09 & 2.47148287e - 02 & 2.47148287e - 02 & 9.99999951e - 01 \end{bmatrix}$

IDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

49

Variational quantum classifier: results

Test set

this presentation is intended solely for the addressee and may contain the solely for the solel

COPYRIGHT - Any reproduction of the images contained in this

Boson Sampling: on-chip implementation

- Aaronson & Arkhipov counter
- Likelihood ratio counter

Distinguishers between uniform and observed output distributions which validate the experiment

51

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Benchmarking: average gate fidelities

Initial pure	state	$\psi = \psi $		>	Targ Fina	et sta I state	ite U \mid e $ ho$	$\psi angle$		
$T = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ e^{i\frac{\pi}{4}} \end{pmatrix}$				CNO	TC =	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	0 1 0	0 0 0	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$
Toffoli =	$\begin{pmatrix}1\\0\\0\\0\\0\\0\\0\end{pmatrix}$	0 1 0 0 0	0 0 1 0 0	0 0 1 0 0	0 0 0 1 1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	10	0	1	0,

State fidelity: $\mathcal{F}_{\psi}(U) = \langle \psi | U^{\dagger} \rho U | \psi \rangle$

 F_{avg} is state fidelity averaged over the Haar measure

Platform (device)	Gate	Number of Qubits	F _{avg} (%)
Quandela (Ascella)	T-gate	1	99.6±0.1
	CNOT	2	93.8±0.6
	Toffoli	3	86±1.2

lonQ (ionq.qpu)	T-Gate	1	99.6±1
	CNOT	2	91.7±1.7
	Toffoli	3	90±3.1
Rigetti (rigetti.aspen-11)	T-Gate	1	88.7±1
	CNOT	2	71.2±1.5
IBM (Quito or Belem)	T-Gate	1	96±1.5
	CNOT	2	86.4±1.5

52

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contair confidential and/or privileged information and may be legally protected from disclosure

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

Generating GHZ states: towards MBQC

Not scalable to work with probabilistic 2-qubit gates

Solution: MBQC

Requires, e.g., construction of graph states, which can be built up of:

- Small entangled states such as GHZ states
- Fusion operations such as Bell measurements

In principle MBQC can be achieved with small constant depth of probabilistic operations

Heralded generation of 3-photon GHZ

states. Measured expectation values of the stabilizing operators of the heralded 3-photon GHZ state $|{\rm GHZ}_3^+\rangle$ yielding a fidelity of $F_{\rm GHZ_3^+}=0.82\pm0.04.$

53

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

> COPYRIGHT - Any reproduction of the images contained in this document without the authorization of the author is prohibited.

A CHSH Bell test

in\out	(<mark>0,0</mark>)	(<mark>0</mark> ,1)	(1,0)	(1,1)
(a , b)	0.418	0.083	0.084	<i>O</i> .415
(a , b ')	0.090	0.416	0.410	0.084
(a ', b)	0.085	0.418	0.418	0.079
(a', b')	0.077	0.429	0.423	0.071

- CF ≈ 0.34
- Tsirelson bound: $CF \approx 0.41$
- Observed signalling: $\sigma^{emp} < 0.05$
- Estimated unsharpness: $\eta^{emp} < 0.001$
- For randomness certification, sharpness and determinism are irrelevant
- Crucial only to establish $CF > \sigma$
- This is the starting point for a protocol to certify the generation of private unpredictable randomness

arXiv:2301.03536 arXiv:2310.19383