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Many of us are used to working with kets |𝜓⟩ and matrices U…

How do we implement protocols in practice?

What are the challenges that can arise?
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1. Experimental setup

2. Photonic quantum computing

3. Demonstrations of variational quantum algorithms
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Quantum dot

In micropillar cavity
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Quantum dot

In micropillar cavity
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12 x 12 fully reconfigurable universal interferometer
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Software package for discrete variable linear optics
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Circuit Unitary matrix Phases Voltages

Compilation Transpilation

!𝑈

arXiv:2310.15349

“ML for Q”
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We are used to the qubit quantum circuit model, 
especially in QML

M. Cerezo et al. Nature Reviews Physics 3, 625-644 (2021)
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We are used to the qubit quantum circuit model, 
especially in QML

M. Cerezo et al. Nature Reviews Physics 3, 625-644 (2021)

How do we proceed with photonic hardware?
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Beamsplitter

Phase shifter

Recall: used in Boson Sampling (Aaronson and Arkhipov, #P hard)

Fock state with ni photons in mode i|𝑛!, 𝑛", … , 𝑛# , … , 𝑛$⟩

+ source and detectors
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Beamsplitter

Phase shifter

Recall: used in Boson Sampling (Aaronson and Arkhipov, #P hard)

Scattering mxm unitary matrix implemented with m(m-1)/2 beam splitters

M. Reck et al. Physical Review Letters 73, 58 (1994)
W. R. Clements et al. Optica 3, 12 (2016)

Fock state with ni photons in mode i|𝑛!, 𝑛", … , 𝑛# , … , 𝑛$⟩

+ source and detectors
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Detectors: ideally photon number resolving

Output states such as 0210301

Current technology: threshold detectors

Indicates click or no click

Output states such as |0110101⟩
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Define mapping

111000000000 à 003000000000

101001000000 à 002001000000
100011000000 à 001011000000

…

As a temporary solution we can use pseudo PNR

PPNR: use additional modes and detectors and 
redirect photons through beamsplitters
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Define mapping

111000000000 à 003000000000

101001000000 à 002001000000
100011000000 à 001011000000

…

As a temporary solution we can use pseudo PNR

PPNR: use additional modes and detectors and 
redirect photons through beamsplitters
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0 !"#$%	 ≔ 1, 0Choose an encoding

0 → 0 + 1

Dual rail

One qubit gates

Beamsplitter

1 !"#$%	 ≔ 0, 1
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However, some two-qubit gates cannot be achieved 
deterministically with passive linear optics

Options:
• Nonlinearities (materials unavailable)
• Post-selection (probabilistic)
• Heralding (probabilistic)
• Feedforward

Example: post-selected CNOT gate

Ralph, Timothy C., et al. Physical Review A 65.6 (2002): 062324.



30

Qubit circuit based Photonic native
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Post-selected gates: non-deterministic computation

PNR detectors not yet available: reduced output space

Optimization in QML: little research in parameter shift rules for linear optics



32

Photon loss is main source of noise: total efficiency 8%

Indistinguishability of the photons: ∼ 94%

Single-photon purity: > 99%



33

Qubit circuit based Photonic native

Variational quantum eigensolver Variational quantum classifier
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𝑅 = 𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝜇)

We consider the H2 molecule with effective 
Hamiltonian +𝐻 = 𝛼𝕀𝕀 + 𝛽Ζ𝕀 + 𝛾𝕀Ζ + 𝛿ΖΖ + 𝜇ΧΧ

Circuit prepares an ansatz state of two qubits:
• dual rail encoding
• post-selected CNOT gate

Error mitigation scheme inspired from D. Lee et al. 
Optica 9, 88-95 (2022)
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𝑅
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[1] B. Y. Gan, D. Leykam, and D. G. Angelakis. EPJ Quantum 
Technol. 9, 16 (2022)

Fock-space based classifier proposed in [1]
Resulting model:

Defined in Fock space:

Unitary from the circuit Observable
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Input Fock state
Pseudo PNR
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Classifying Fisher’s iris dataset:
• 150 data points
• 4 dimensions
• 3 classes
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• First device of its kind based on single photons

• Available online on the cloud

• Versatility:
• VQA demonstration
• Benchmarking
• Other protocols

arXiv:2306.00874
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Experimental directions:
• Near term optimization of each component in setup
• PNR detectors
• Towards measurement based QC

• GHZ state generation
• Linear cluster states directly from the source [1]

[1] N. Coste, D.A. Fioretto, N. Belabas, et al. Nat. Photon. 17, 582–587 (2023)
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Experimental directions:
• Near term optimization of each component in setup
• PNR detectors
• Towards measurement based QC

• GHZ state generation
• Linear cluster states directly from the source [1]

Variational algorithms:
• Optimization and gradient evaluation 
• Compilation of qubit circuits to photonic circuits
• Inductive bias of linear optics?

[1] N. Coste, D.A. Fioretto, N. Belabas, et al. Nat. Photon. 17, 582–587 (2023)
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https://perceval.quandela.net/

https://cloud.quandela.com/

https://apply.workable.com/quandela/
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Error mitigation scheme inspired from [1]

State preparation and measurement (SPAM) errors

Correct probability distribution 𝑞 = Γ#𝑝

Evaluate right before experiment

[1] D. Lee et al. Optica 9, 88-95 (2022)



49

Train set Test set
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• Aaronson & Arkhipov counter
• Likelihood ratio counter

Distinguishers between uniform and observed output 
distributions which validate the experiment
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R. Mezher and S. Wein, Direct computing of the average gate fidelity of any gate, In preparation, 2023.

Platform (device) Gate Number 
of Qubits Favg (%) 

Quandela (Ascella) 

T-gate 1 99.6±0.1 

CNOT 2 93.8±0.6 

Toffoli 3 86±1.2 

T =
1 0
0 𝑒#

%
&

CNOT =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Toffoli =

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 1
0 1 0

Initial pure state | ⟩𝜓 à Target state U| ⟩𝜓
Final state 𝜌

State fidelity: ℱ' 𝑈 = 𝜓 𝑈(𝜌𝑈 𝜓

Favg is state fidelity averaged over the Haar measure

IonQ
(ionq.qpu) 

T-Gate 1 99.6±1 

CNOT 2 91.7±1.7 

Toffoli 3 90±3.1 

Rigetti
(rigetti.aspen-11) 

T-Gate 1 88.7±1 

CNOT 2 71.2±1.5 

IBM 
(Quito or Belem) 

T-Gate 1 96±1.5 

CNOT 2 86.4±1.5 



52

Not scalable to work with probabilistic 2-qubit gates

Solution: MBQC

Requires, e.g., construction of graph states, which can 
be built up of:
• Small entangled states such as GHZ states
• Fusion operations such as Bell measurements

In principle MBQC can be achieved with small constant 
depth of probabilistic operations
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