

Approximate autonomous quantum error correction with Reinforcement Learning

Clemens Gneiting

Y. Zeng, Z.Y. Zhou, E. Rinaldi, CG, F. Nori, PRL 131, 050601 (2023)

QTML 2023, CERN, Nov 24, 2023

Outline

Quantum computing, noise, qantum error correction

• *Autonomous* quantum error correction

Code space optimization using reinforcement learning

Surpassing break even with the RL code

An experimental proposal

Quantum computing, noise, qantum error correction

Quantum computation

- Quantum computation promises drastic speedup and scaling advantages for specific tasks: factorization, search, quantum simulation, QML, etc.
- basic building blocks: qubits: either natural or artificial two-level quantum systems

$$|\psi_{\theta\phi}\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

- promising platforms: superconducting qubits, trapped ions, quantum dots, photons, etc.
- different computational paradigms to implement algorithms: unitary gate-based, measurement-based, adiabatic, dissipative, etc.
- in this talk: bosonic qubits, unitary gate-based quantum information processing

bosonic

adressability requires nondegenerate levels

Noise

coherent (parameter drifts etc.) and incoherent (uncontrolled entanglement with environment) noise deteriorates the proximity to the target state

→ quantum advantage is rapidly lost!

time-continuous description

$$\begin{split} \dot{\rho} &= -\frac{i}{\hbar} [\hat{H}(t),\rho] + \gamma \sum_{j=1}^{N} \left(\hat{L}_{j} \rho \hat{L}_{j}^{\dagger} - \frac{1}{2} \{ \hat{L}_{j}^{\dagger} \hat{L}_{j},\rho \} \right) \quad \text{..Lindblad master equation} \\ \hat{H}(t) \text{ ..quantum algorithm} \end{split}$$

 \hat{L}_j ...error channels

generic qubit error channels: spin flip, dephasing, ... $\hat{L}_j = \hat{\sigma}_{x/y/z}$ dominant **bosonic** error channel: photon loss, $\hat{L} = \hat{a}$

Quantum error correction (QEC)

Define "logical qubit" $|0_L\rangle, |1_L\rangle$ in a larger Hilbert space, such that errors neither erase nor distort the stored quantum information

$$|\psi_{\theta\phi}
angle = \cosrac{ heta}{2} |0_{\rm L}
angle + e^{i\phi} \sinrac{ heta}{2} |1_{\rm L}
angle$$

$$\langle u_L | \hat{E}_i^{\dagger} \hat{E}_j | v_L \rangle = \alpha_{ij} \delta_{uv} \qquad u, v \in \{0, 1\}$$
$$\hat{E}_i \in \{\hat{I}, \hat{L}_1, \dots, \hat{L}_N\}$$

implies for bosonic codes: $\langle 0_L | \hat{a}^{\dagger} \hat{a} | 0_L \rangle = \langle 1_L | \hat{a}^{\dagger} \hat{a} | 1_L \rangle$

requires that at least one code state is a superposition of Fock states!

error manifold

ground manifold

 errors are corrected via syndrome measurements and adapted feedback of (unitary) correction operators

Quantum error correction (QEC)

How to achieve redundancy in state space

many physical qubits

set of n physical qubits provides redundant Hilbert space with dimension $N = 2^n$

Examples: Steane code, surface code, color code, etc.

bosonic system

oscillator states up to $|N\rangle$ provide redundant Hilbert space equivalent to a set of $\log_2 N$ qubits

Examples: Gottesman-Kitaev-Preskill code, cat code, binomial codes, etc.

QEC in *bosonic* systems minimizes overhead, as only one nonlinear element needed for operations

• challenge: larger Hilbert space introduces more errors!

How to measure the effectiveness of quantum error correction

• average fidelity
$$\bar{F}(t) = \frac{1}{4\pi} \int_{\Omega} F(\theta, \phi, t) \, d\Omega$$

 $F(\theta, \phi, t) = \operatorname{Tr}[\rho_{t_0}(\theta, \phi)\rho_t(\theta, \phi)]$
 $|\psi_{t_0}\rangle = \cos\frac{\theta}{2}|0_L\rangle + e^{i\phi}\sin\frac{\theta}{2}|1_L\rangle$
short-time expansion: $\overline{F}(\delta t) = 1 - \frac{1}{2}\gamma_{\text{err}}\delta t$

overall decay rate of the average fidelity gives the error rate

without error correction refers to the physical or "natural" qubits

the larger G the better; **break even:** G = 1

Bosonic codes

dominant error channel: photon loss $\hat{L} = \hat{a}$

Example: binomial code

 $|0_L\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |4\rangle)$ KL: $\hat{a}|0_L\rangle \propto |3\rangle$ $\hat{a}|1_L\rangle \propto |1\rangle$ $|1_L\rangle = |2\rangle$

 $\langle 0_L | \hat{a}^{\dagger} \hat{a} | 0_L \rangle = \langle 1_L | \hat{a}^{\dagger} \hat{a} | 1_L \rangle = 2$

parity measurement detects errors

M. Michael et al, PRX 6, 031006 (2016)

Example: Gottesman-Kitaev-Preskill (GKP) code

designed to protect against (small) phase-space displacements, but works also well for photon loss!

experimentally realized including error correction V.V. Sivak et al, Nature 616, 50 (2023)

gain: $G \approx 2.3$

Autonomous quantum error correction

Autonomous quantum error correction

Idea: protect logical qubits by engineered dissipation, avoiding the necessity of frequent, error-prone measurement-feedback loops

$$\dot{\rho} = -\frac{i}{\hbar} [\hat{H}(t), \rho] + \gamma \sum_{j=1}^{N} \mathcal{D}[\hat{L}_{\text{nat},j}] + M\gamma \sum_{k=1}^{M} \mathcal{D}[\hat{L}_{\text{eng},k}] \qquad M \gg 1$$
$$\mathcal{D}[\hat{L}] = 2\hat{L}\rho\hat{L}^{\dagger} - \hat{L}^{\dagger}\hat{L}\rho - \rho\hat{L}^{\dagger}\hat{L}$$

engineered jump operators pump the corrupted state back from the error space into the code space (before another error can happen)

$$\hat{L}_{\mathrm{eng}} = |0_{\mathrm{L}}\rangle\langle 0_{\mathrm{er}}| + |1_{\mathrm{L}}\rangle\langle 1_{\mathrm{er}}|$$

- KL condition still needs to be satisfied for full QEC
- conditioned time evolution in between error jumps requires separate correction mechanism
- experimental realization with cat qubit: J. Gertler et al, Nature 590, 243 (2021)

Example: binomial code

• code words:
$$|0_L\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |4\rangle)$$
 KL: $\hat{a}|0_L\rangle \propto |3\rangle$ $\hat{a}|1_L\rangle \propto |1\rangle$
 $|1_L\rangle = |2\rangle$ KL: $\hat{a}|0_L\rangle \propto |3\rangle$ $\hat{a}|1_L\rangle \propto |1\rangle$

engineered jump operators:

 $\hat{L}_{\text{eng},1} = \frac{1}{\sqrt{2}} (|0\rangle + |4\rangle) \langle 3| + |2\rangle \langle 1|$ and $\hat{L}_{\text{eng},2} = |0_{\text{L}}\rangle (\langle 0| - \langle 4|)$

requires at least two jump operators for AQEC to work well!

J.-M. Lihm, K. Noh, U. Fischer, PRA 98, 012317 (2018)

Example: $\sqrt{3}$ code

code words:

discovered by automatized search algorithm

$$|\psi_{0}\rangle = \sqrt{1 - \frac{1}{\sqrt{3}}} |0\rangle + \frac{1}{\sqrt[4]{3}} |3\rangle$$

$$|\psi_{1}\rangle = \sqrt{\frac{2(6 - \sqrt{3})}{\sqrt{3} + 9}} |1\rangle - \sqrt{\frac{(\sqrt{3} - 1)(6 - \sqrt{3})}{2(\sqrt{3} + 9)}} |4\rangle + \sqrt{\frac{3 - \sqrt{3}}{2(\sqrt{3} + 9)}} |6\rangle$$
KL: $\langle \psi_{0} | \hat{a}^{\dagger} \hat{a} | \psi_{0} \rangle = \langle \psi_{1} | \hat{a}^{\dagger} \hat{a} | \psi_{1} \rangle = \sqrt{3}$

 single engineered jump operator, realized through coupling to auxiliary qubit:

 $D[|\psi_0\rangle \langle \psi_2| + |\psi_1\rangle \langle \psi_3| + \cdots], \text{ where } |\psi_2\rangle \propto \hat{a} |\psi_0\rangle$

 $|\psi_3
angle \propto \hat{a} \,|\psi_1
angle$

requires at least Hamiltonian distance d = 2, higher-order nonlinearity needs to be decomposed into 4 control fields that introduce additional noise

Z. Wang et al, PRX Quantum 3, 020302 (2022)

Example: $\sqrt{3}$ code

code words:

discovered by automatized search algorithm

$$|\psi_{0}\rangle = \sqrt{1 - \frac{1}{\sqrt{3}}} |0\rangle + \frac{1}{\sqrt[4]{3}} |3\rangle$$

$$|\psi_{1}\rangle = \sqrt{\frac{2(6 - \sqrt{3})}{\sqrt{3} + 9}} |1\rangle - \sqrt{\frac{(\sqrt{3} - 1)(6 - \sqrt{3})}{2(\sqrt{3} + 9)}} |4\rangle + \sqrt{\frac{3 - \sqrt{3}}{2(\sqrt{3} + 9)}} |6\rangle$$
KL: $\langle \psi_{0} | \hat{a}^{\dagger} \hat{a} | \psi_{0} \rangle = \langle \psi_{1} | \hat{a}^{\dagger} \hat{a} | \psi_{1} \rangle = \sqrt{3}$

 single engineered jump operator, realized through coupling to auxiliary qubit:

 $|\psi_3\rangle \propto \hat{a} |\psi_1\rangle$

requires at least Hamiltonian distance d = 2, higher-order nonlinearity needs to be decomposed into 4 control fields that introduce additional noise

Z. Wang et al, PRX Quantum 3, 020302 (2022)

Is more experiment-friendly autonomous QEC possible?

1.00 0.95 0.90 0.85 0.80 $\sqrt{3} \operatorname{code}$ 0.80 $\sqrt{3} \operatorname{code}$ 0.80 $0.5 t (\operatorname{ms})^{1.0}$ 1.5

from PRX Quantum 3, 020302 (2022)

 $D[|\psi_0\rangle \langle \psi_2| + |\psi_1\rangle \langle \psi_3| + \cdots], \text{ where } |\psi_2\rangle \propto \hat{a} |\psi_0\rangle$

Code space optimization using reinforcement learning

Our ansatz

• relax the KL condition part that requires $\langle 0_L | \hat{a}^{\dagger} \hat{a} | 0_L \rangle = \langle 1_L | \hat{a}^{\dagger} \hat{a} | 1_L \rangle$

$$|0_{\rm L}\rangle = \sum_{n=0}^{\infty} c_n^{(0)} |4n\rangle$$
 the coefficients $c_n^{(0)}$ and $c_n^{(1)}$ are to be optimized
 $|1_{\rm L}\rangle = \sum_{n=0}^{\infty} c_n^{(1)} |4n+2\rangle$ Fock-state superpositions not excluded!

restrict us to a single engineered jump operator

$$L_{\rm eng} = L_{\rm o} \left\{ {\rm Tr} \left[L_{\rm o}^{\dagger} L_{\rm o} \right] \right\}^{-1/2}$$
$$L_{\rm o} = |0_{\rm L}\rangle \langle 0_{\rm er}| + |1_{\rm L}\rangle \langle 1_{\rm er}| \qquad |u_{\rm er}\rangle = a |u_{\rm L}\rangle / \xi_u$$

realization through coupling to auxiliary qubit:

$$\begin{split} \frac{d\rho}{dt} &= -i[H_{\text{eff}},\rho] + \frac{\gamma_a}{2}\mathcal{D}[a] + \frac{\gamma_b}{2}\mathcal{D}[\sigma_-] \\ H_{\text{eff}} &= g(L_{\text{eng}}\sigma_+ + L_{\text{eng}}^{\dagger}\sigma_-) \end{split} \qquad \qquad \gamma_a,g \ll \gamma_b \end{split}$$

tracing out the qubit gives rise to the desired engineered system dynamics

Code space optimization with reinforcement learning

• **goal:** find coefficients $[c_n^{(0)}, c_n^{(1)}]$ that maximize mean fidelity at $\gamma_a t = 0.6$

$$\bullet \quad \text{simulate} \quad \frac{d\rho}{dt} = -i[H_{\text{eff}}, \rho] + \frac{\gamma_a}{2}\mathcal{D}[a] + \frac{\gamma_b}{2}\mathcal{D}[\sigma_-] \quad \text{with} \quad g/\gamma_a = 400 \quad \text{and} \quad \gamma_b/\gamma_a = 1750$$

$$\text{for} \quad |\psi_{t_0}\rangle = \cos\frac{\theta}{2}|_{0_{\text{L}}}\rangle + e^{i\phi}\sin\frac{\theta}{2}|_{1_{\text{L}}}\rangle \quad \text{until} \quad \gamma_a t = 0.6 \quad \text{realistic parameter choices that}$$

$$\text{satisfy } \gamma_a, g \ll \gamma_b$$

RL schematics

action: coefficient vector $[c_n^{(0)}, c_n^{(1)}]$

state: mean fidelity $\overline{F}(t)$

reward: difference between mean fidelity of code space and break even

policy function: decides which actions to take depending on state and reward modeled by feedforward neural network

100k 200k episode

Code space optimization with reinforcement learning

• goal: find coefficients $[c_n^{(0)}, c_n^{(1)}]$ that maximize mean fidelity at $\gamma_a t = 0.6$

$$\bullet \quad \text{simulate} \quad \frac{d\rho}{dt} = -i[H_{\text{eff}}, \rho] + \frac{\gamma_a}{2}\mathcal{D}[a] + \frac{\gamma_b}{2}\mathcal{D}[\sigma_-] \quad \text{with} \quad g/\gamma_a = 400 \quad \text{and} \quad \gamma_b/\gamma_a = 1750$$

$$\text{for} \quad |\psi_{t_0}\rangle = \cos\frac{\theta}{2}|_{0_{\text{L}}\rangle} + e^{i\phi}\sin\frac{\theta}{2}|_{1_{\text{L}}\rangle} \quad \text{until} \quad \gamma_a t = 0.6 \quad \text{realistic parameter choices that}$$

$$\text{satisfy } \gamma_a, g \ll \gamma_b$$

some more details:

We start with vast search space up to N = 40 Fock states

RL allows us to gradually reduce the search space to relevant Fock states

Training took 1-2 weeks on a cloud cluster

RL code

• RL finds surprisingly simple bosonic code: even though Fock-state superpositions were not excluded, they turn out to be not optimal $\begin{vmatrix}
0_L \rangle = |4\rangle & \langle 0_L | \hat{a}^{\dagger} \hat{a} | 0_L \rangle = 4 \\
|1_L \rangle = |2\rangle & \langle 1_L | \hat{a}^{\dagger} \hat{a} | 1_L \rangle = 2
\end{cases}$

- Single engineered jump operator $L_{eng} \propto |2\rangle\langle 1| + |4\rangle\langle 3|$ realizable with Hamiltonian distance d = 1 (gates $d_g = 2$)
- Break even is well surpassed: the mean infidelity is about 0.17 times the break-even threshold
- Not all states are equally well protected, but all well beyond break even

mean fidelity:

effective residual dephasing

possible gain:
$$Gpprox 5.8$$

Comparison with other codes

RL code outperforms binomial code and $\sqrt{3}$ code if there is a single corrective jump operator

all codes are corrected with a single (optimal) jump operator

- binomial code and $\sqrt{3}$ code can perform better, however at the cost of second engineered jump operator
- RL code is optimized for *single* engineered jump operator, adding more of them yields no improvement
- short transition period where RL code performs poorer: corrective jump operator not yet effective while single-photon loss scales with mean photon number

Role of the engineered jump rate

increasing the engineered jump rate further reduces the fidelity decay

• a residual decay remains due to $\langle 0_L | \hat{a}^{\dagger} \hat{a} | 0_L \rangle \neq \langle 1_L | \hat{a}^{\dagger} \hat{a} | 1_L \rangle$

initial dip can be arbitrarily mitigated

Optimality of the Fock-state pair

How does the performance change if we shift the code in Fock space?

code words \ket{m} and $\ket{m+2}$

on the one hand: the larger m the better is the KL condition satisfied
on the other hand: the larger m the stronger is the single-photon loss

Experimental scheme (proposal)

Experimental proposal

How to realize the effective Hamiltonian $H_{\rm eff} = g(L_{\rm eng}\sigma_+ + L_{\rm eng}^{\dagger}\sigma_-)$

 encoding mode is complemented by a lossy auxiliary qubit and a lossy auxiliary mode

$$\begin{split} \frac{d\rho}{dt} &= -i[H,\rho] + \frac{\gamma_{a1}}{2}\mathcal{D}[a] + \frac{\gamma_{b1}}{2}\mathcal{D}[\sigma_{-}] + \frac{\gamma_{c1}}{2}\mathcal{D}[c] \\ H &= \omega_{a}a^{\dagger}a + \frac{\omega_{b}}{2}\sigma_{z} + \omega_{c}c^{\dagger}c + f(t)(a+a^{\dagger})\sigma_{x} \\ &+ g_{c}(t)(c^{\dagger}+c)\sigma_{x} + \frac{\chi}{2}a^{\dagger}a\sigma_{z}, \end{split}$$

time-dependent control fields:

$$\begin{split} f(t) &= \frac{2\alpha_0}{\sqrt{2}} \cos\left[(\omega_s + \frac{3\chi}{2})t \right] + \frac{2\alpha_0}{\sqrt{4}} \cos\left[(\omega_s + \frac{7\chi}{2})t \right] & \qquad \omega_s = \omega_a + \omega_b \\ \omega_a, \omega_b, \omega_c \gg \chi \quad \text{..nonlinear coefficient} \\ g_c(t) &= 2\alpha_1 \cos(2\chi t) + 2\alpha_1 \cos(4\chi t) & \qquad \gamma_{c1} \gg \alpha_1 \ge \alpha_0 \gg \gamma_{a1}, \gamma_{b1} \end{split}$$

adiabatic elimination of high-decay mode Cresults in the target Hamiltonian $H_{eff} = g(L_{eng}\sigma_+ + L_{eng}^{\dagger}\sigma_-)$

$$\omega_b = \omega_c$$

Experimental proposal

How to realize the effective Hamiltonian $H_{\rm eff} = g(L_{\rm eng}\sigma_+ + L_{\rm eng}^{\dagger}\sigma_-)$

 encoding mode is complemented by a lossy auxiliary qubit and a lossy auxiliary mode

gain: $G \approx 5.8$

0.4

0.6

$$\begin{split} \frac{d\rho}{dt} &= -i[H,\rho] + \frac{\gamma_{a1}}{2}\mathcal{D}[a] + \frac{\gamma_{b1}}{2}\mathcal{D}[\sigma_{-}] + \frac{\gamma_{c1}}{2}\mathcal{D}[c] \\ H &= \omega_{a}a^{\dagger}a + \frac{\omega_{b}}{2}\sigma_{z} + \omega_{c}c^{\dagger}c + f(t)(a + a^{\dagger})\sigma_{x} \\ &+ g_{c}(t)(c^{\dagger} + c)\sigma_{x} + \frac{\chi}{2}a^{\dagger}a\sigma_{z}, \end{split}$$

time-dependent control fields:

1.00

0.95

0.90

0.85

0

mean fidelity

 $\gamma_{a1}/2\pi = 0.2 \mathrm{kHz} \quad \gamma_{b1}/2\pi = 2 \mathrm{kHz} \quad \gamma_{c1}/2\pi = 0.12 \mathrm{MHz}$

RL code

Break-even

0.2

Ya1t

Autonomously corrected RL code delivers..

- ..significantly improved bosonic qubits at the cost of moderate device overhead
- ..potential low-level element of an error correction stack
- ...neat application of how classical ML can support (inspire) the development of improved quantum technologies

Y. Zeng, Z.Y. Zhou, E. Rinaldi, CG, F. Nori, *PRL* 131, 050601 (2023)

Yexiong Zeng

Zheng-Yang Zhou

Enrico Rinaldi

Franco Nori

Yexiong Zeng

Zheng-Yang Zhou

Enrico Rinaldi

Franco Nori

Postdoc positions available!

fnori@riken.jp clemens.gneiting@riken.jp

Yexiong Zeng

Zheng-Yang Zhou

Enrico Rinaldi

Franco Nori

Postdoc positions available!

fnori@riken.jp clemens.gneiting@riken.jp

Thank you for your attention!