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€ Autonomous quantum error correction

€ (ode space optimization using reinforcement learning

€ Surpassing break even with the RL code

€® An experimental proposal



Quantum computing, noise,
gantum error correction



Quantum computation

€ Quantum computation promises drastic speedup
and scaling advantages for specific tasks:
factorization, search, quantum simulation, QML, etc.

€ Dbasic building blocks: qubits: either natural or
artificial two-level quantum systems

0 - 0
1%94) = cos 5\0) + e sin 5\1)

& promising platforms: superconducting qubits,
trapped ions, quantum dots, photons, etc.

€ different computational paradigms to implement
algorithms: unitary gate-based, measurement-based,
adiabatic, dissipative, etc.

€ in this talk: bosonic qubits, unitary gate-based quantum
iInformation processing

bosonic

adressability requires
nondegenerate levels



Noise

€ coherent (parameter drifts etc.) and incoherent (uncontrolled entanglement
with environment) noise deteriorates the proximity to the target state

=) quantum advantage is rapidly lost!
€ time-continuous description

. N

g 1

p= _ﬁ[H@)’ pl + 7~ E (Lij;L- — §{L;L-Lj,,0}) .Lindblad master equation
J=1

A

H(t) ..quantum algorithm

ij ..error channels

A

generic qubit error channels: spin flip, dephasing, ... L; = 0./,

dominant bosonic error channel: photon loss, L = a



Quantum error correction (QEC)

Define “logical qubit” |0L.), |11.) in a larger Hilbert space, such that
errors neither erase nor distort the stored quantum information

|¢9q§> = Cosg |0L> = et® sing |1L> @ Ly ?@
\N__ 7

error manifold

€ guaranteed by Knill-Laflamme (KL) condition @
ground manifold

<uL|EJEj‘UL> — Q‘ijduv u,v S {071}
Ez‘ S {j,zl,...,i]\[}
implies for bosonic codes: (0;]a'a|0.) = (1z|atal1r)
requires that at least one code state is a superposition of Fock states!

& errors are corrected via syndrome measurements
and adapted feedback of (unitary) correction operators
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Quantum error correction (QEC)

How to achieve redundancy in state space

many physical qubits bosonic system

QO O}
QIOIO

set of n, physical qubits provides oscillator states up to | V) provide

redundant Hilbert space with redundant Hilbert space equivalent to

dimension N = 2" a set of logo, N qubits

Examples: Steane code, surface code, Examples: Gottesman-Kitaev-Preskill code,
color code, etc. cat code, binomial codes, etc.

QEC in bosonic systems minimizes overhead, as only one nonlinear
element needed for operations

€ challenge: larger Hilbert space introduces more errors!



How to measure the effectiveness of quantum error correction
& average fidelity ) = i/ F0,6.¢) dO
4:7T O
F(ea Qb, t) - Tr[pto (97 ¢)pt (97 Qb)]
‘¢t0> — cosg 0) + €™ sing 11p)

: . — 1
short-time expansion: F(dt) =1 — §%rr5t

overall decay rate of the average fidelity gives the error rate

€ ratio of error rate with and without error correction: gain (G

without error correction refers to the physical or “natural” qubits

the larger G the better; break even: G =1



Bosonic codes

dominant error channel: photonloss L = a

. . 1 . .
Example: binomial code 0r) = ﬁ(|0> +14))  KL: al0r) o< |3) allp) o |1)
1) = |2) (0zla’alor) = (1rlafally) =2
parity measurement detects errors M. Michael et al, PRX 6, 031006 (2016)

Example: Gottesman-Kitaev-Preskill (GKP) code

wA(q) ﬁ Wigner function
o o o
cee ceoe ° ° o
> ( o o o
Or)

»
designed to protect against (small) phase-space displacements,
but works also well for photon loss!

€ experimentally realized including error correction  V.V. Sivak et al, Nature 616, 50 (2023)

gain: G ~2.3



Autonomous
quantum error correction
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Autonomous quantum error correction

Idea: protect logical qubits by engineered dissipation, avoiding
the necessity of frequent, error-prone measurement-feedback loops

. N M

. 1 .~ A ~

p=—[H(t).p)+ ¥ Dllnat;] + My Y D[Lengi] M > 1
j=1 k=1

D[L] = 2LpLt — LTLp — pL'L

€ engineered jump operators pump the corrupted state back from the
error space into the code space (before another error can happen)

Fong = 100) Qe + 112 (L

4

KL condition still needs to be satisfied for full QEC

€ conditioned time evolution in between error jumps requires
separate correction mechanism

€ experimental realization with cat qubit: J. Gertler et al, Nature 590, 243 (2021)
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Example: binomial code

& code words: yom:%qoww) KL: alop) ocJ3)  allz) o J1)

(0latalor) = (1zla%al1L) =2
1) =12)

€ engineered jump operators:

A 1 A
Leng,1 = ﬁ<\0> +14) 3]+ [2)(1] and  Leng,2 = [01)({0] — (4])
WIthOUt f/eng,2 Wlth zeng,Q
ok T 1.0 ' ' ' ' ]
M = 1000
2 o,x\M = 10 I s M =100
i g
[ |0), [1) encoding | = |0),[1) encoding |
%O,ﬁ \ ?:;3306 -
§ 04 4 = 1N{=i[f] - § 04
< M =10 T < V=1
0l M=0 _ ool M=0"
0 i 2 3 1 5 0 i 2 3 4 5
Time (1/y) Time (1/y)

from PRA 98, 012317 (2018)

requires at least two jump operators for AQEC to work well!

J.-M. Lihm, K. Noh, U. Fischer, PRA 98, 012317 (2018)
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Example: V3 code

€ code words: discovered by automatized search algorithm

1 1
Vo) = [1 = —=10) + 5= 13) b o
' V3 V3 KL: (vola’alvo) = (rla'aly;) = V3
2(6 f) (/3= 1)(6 — f) 3-V3
=V ”_\/ 23+9 VTV Br) 0

€ single engineered jump operator, realized through coupling to auxiliary
qubit:

D[¥o) (Y2l + Y1) (3] + -~ -1, where [y2) oca o)

1.00 [¥3) ocalyn)
0.95
0.90 = requires at least Hamiltonian distance d = 2,
" | -~ | higher-order nonlinearity needs to be decomposed

— V3code TS into 4 control fields that introduce additional noise
0.80| —— Break even

i . 1. 1.

0.0 0 5t (ms) 0 > Z. Wang et al, PRX Quantum 3, 020302 (2022)

from PRX Quantum 3, 020302 (2022)
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Example: V3 code

€ code words: discovered by automatized search algorithm

1 1
Vo) =, [1= —=10) + = 13) b o
' V3 V3 KL: (vola’alvo) = (rla'aly;) = V3
2(6 f) (/3= 1)(6 — f) 3-V3
=AM / 23+9 TV Bt )

€ single engineered jump operator, realized through coupling to auxiliary
qubit:

D[¥o) (Y2l + Y1) (3] + -~ -1, where [y2) oca o)

1.00[ [¥3) ocalyn)
0.95
0.90 requires at least Hamiltonian distance d = 2,
0.85 ~ | higher-order nonlinearity needs to be decomposed

— v3code into 4 control fields that introduce additional noise
0.80| —— Break even | ~_]

; : 1. 1.

0.0 0 515 (ms) 0 > Z. Wang et al, PRX Quantum 3, 020302 (2022)

from PRX Quantum 3, 020302 (2022)

Is more experiment-friendly autonomous QEC possible?
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Code space optimization
using reinforcement learning
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Our ansatz

& relax the KL condition part that requires (0r|a'a|0L) = (1|aTa|1L)

0L = ) e dn)

L) =) cdn +2)

n=0
€ restrict us to a single engineered jump operator

Leng = Lo {Tr [LEL,]} Y

Lo = |00){Ocr| + [1L)(Tex|  |tter) = alur)}/&u

€ realization through coupling to auxiliary qubit:

dp . . Ya Yo
L — —ilHs,p] + D[] + 2Dl ]

Yar g <K Vb
Her= 9(Lengoy + L, ;0-)

tracing out the qubit gives rise to
the desired engineered system dynamics

16

the coefficients 07(10) and 07(11) are to be optimized

Fock-state superpositions not excluded!

e, 1)

[Weg,0) Vb Ya

-

w55, 0)

N\

y [¥6g: 1)



Code space optimization with reinforcement learning

@ goal: find coefficients[c}”,¢!"] that maximize mean fidelity at Y.t = 0.6

€ simulate %:—i[Heff,p]—F Lepla] + LDl

> 5 with  ¢g/v, =400 and ~4/v, = 1750

6 i . 0 . _ realistic parameter choices that
for ‘¢t0> :COS§IOL)+e¢sm§\1L> until /yat = 0.6 satisfy Ya 9 < M

pohcy n(A|S)

RL schematics

%7 0\7O
?NQ OE\ action: Qy

%Q,T/,i

i i © (1) o% /
action: coefficient vector [c,,’, ¢, "] @

code space
. . 1 . T ¢
state: mean fidelity F'() reward: By, T | ;
_ state: Sk §‘Sk+1 o/

reward: difference between mean fidelity of code space 5 e :
and break even

policy function: decides which actions to take depending
on state and reward

modeled by feedforward neural network

reward
W [+
{1 &
(=) (=)

0 100k 200k 300k
episode

17



Code space optimization with reinforcement learning

@ goal: find coefficients ¢!, ¢{’] that maximize mean fidelity at vat = 0.6

< simulate % = —i[Hog, p] + LDla] + LDlo_]

> 5 Dlo with  ¢g/v, =400 and ~4/v, = 1750

for ‘g/}t0> = cosg 0L) + e sing 1) until Vet = 0.6

some more details:

We start with vast search space upto N = 40 Fock states

RL allows us to gradually reduce the search space to relevant
Fock states

Training took 1-2 weeks on a cloud cluster

18

realistic parameter choices that
satisfy va,9 < "

O
&4
e

Za

policy: m(AlS)
5

%\\70 action: ay
0 A
Q)O

reward: 7, . Th41 !

code spac

| state: Sk ;Wcﬂ@‘,

reward

900

600

3004

0 100k 200k 300k

episode



RL code

€ RL finds surprisingly simple bosonic code:

even though Fock-state superpositions were
not excluded, they turn out to be not optimal

02) = 14)
1z) =12)

@ Single engineered jump operator Leng o< |2)(1] + [4)(3|
realizable with Hamiltonian distance d = 1 (gates d, = 2)

€ Break even is well surpassed: the mean infidelity is about 0.17 times

the break-even threshold

€ Not all states are equally well protected, but all well beyond break even

state-dependent fidelity at 7ot = 0.6

2m

ﬂ

O_

<

0 - 0
|1eg) = cos 3 |OL) + €' sin 3 I1p)

(d)

1.00

0.92

0.84

0

/2

e

n

mean fidelity:
F(t) = ; 4+ %exp(—uyat), u=3-—2v2=~0.17
00 0 0 0
00 0 0 0
pa(t)= | 0 0  p22(0) 0 p2a(0)e 4ot
00 0 0 0
0 0 pga(0)e™=" 0 pas(0)

effective residual dephasing

possible gain: G ~ 5.8|



Comparison with other codes

€ RL code outperforms binomial code and v3 code iR
if there is a single corrective jump operator

ee < =

2 0 02 04

g O - 8 ~e. \_«()Pj[‘lmmed
all codes are corrected with o
a single (optimal) jump operator S — RL codex

€06 V3 code

--- Break-even

— Binomial code

o o 1 2 3 4

€ binomial code and V3 code can perform better, Yal
however at the cost of second engineered jump operator

€ RL code is optimized for single engineered jump operator,
adding more of them yields no improvement

€ short transition period where RL code performs poorer:
corrective jump operator not yet effective
while single-photon loss scales with

1 11 =

mean photon number (a)

2 ~

._ﬂé 0.5 IE‘* 0.95 -

[+ —YaT=0 YaT =0.012
—¥4T=0.006 —Y,T=0.018

o, , , 0.94, : : :
0 0.2 0.4 0.6 0 0.2 0.4 0.6
Vat ]/at

F_(t*) = max- A F(t”
20 ( ) t*€t,t+7] ( )



Role of the engineered jump rate

1.01
dpe  Va FaA
— A7 D[ Len

B
5 0.8 S 0 S1l?
= A = 8000 Vb Va
g —

0.6

0 10 20 30
t (us)

€ increasing the engineered jump rate further reduces the fidelity decay
& aresidual decay remains due to (0r|a'a|0L) # (1r|aTa|1L)

<€ initial dip can be arbitrarily mitigated
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Optimality of the Fock-state pair

How does the performance change if we shift the code in Fock space?

code words |m) and |m + 2)

R Break-even

> / N
e y ™
T) 0'7 _ﬁ?&f
=] i i,
= B
g h
x 0.6 .
g

0.5 1 s

0 2 4 6 8
m

€ on the one hand: the larger m the better is the KL condition satisfied

€ on the other hand: the larger m the stronger is the single-photon loss
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Experimental scheme
(proposal)
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Experimental proposal

How to realize the effective Hamiltonian Heg = g(Lengoy + Leng -)

€ encoding mode is complemented by a lossy auxiliary qubit

and a lossy auxiliary mode

dp

. ’Yal
— = —4|H,

2

[]+fbl [_]_1_’}(612)[]

H =wqa'a + &az + weele+ f(t)(a+al)o,

2
+ g.()(ct +e)on + %aTaaz,

time-dependent control fields:

f(t)= % COS [(ws + %)t] + % COS

21 cos(2xt) + 2y cos(4xt)

ge(t)=

l(ws + =

X
2)

adiabatic elimination of high-decay mode C
results in the target Hamiltonian H.g = g(Lepgo4 + Llngo-—)

24

f]

Wp = We

Ws = Wy + Wp
Wa, Wp,We 2> X ..nonlinear coefficient

Ye1 > Q1 2 09 > Va1, Vb1



Experimental proposal

How to realize the effective Hamiltonian Heg = g(Lengoy + Leng -)

€ encoding mode is complemented by a lossy auxiliary qubit

and a lossy auxiliary mode .
y y gain: G = 5.8
dp Va1 1, Vel 1.001
L — —ilH, g+ 2Dld] + 2D+ LDl
© 0.95
w 2
H =wg,a'a + ?baz + weele + f)(a+ a,T)Jx % 0907 R code ﬂ %“m%
4+ gc(t)(cT +c)o, + %aj[cwz, = 0854 7 Break-even %‘MM‘%
0 0.2 0.4 0.6
time-dependent control fields: Yail
2
f(t): @ CcOS [(ws —+ S_X)t] + ﬂ COS [(ws -+ 7_X)t] wa/27r = 35GHZ
V2 2 Vi 2
wp/2m = w. /27 = 5GHz
ge(t) =2aq cos(2xt) + 201 cos(4xt) /27 = 3MHz

ap/2m =0.06MHz  «;/27 = 0.07TMHz
Ya1/2m = 0.2kHz 741 /27 = 2kHz 7.1 /27 = 0.12MHz
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Summary p.

RIMEN

Autonomously corrected RL code delivers..

& _significantly improved bosonic qubits at the cost of moderate
device overhead

& .potential low-level element of an error correction stack

& ..neat application of how classical ML can support (inspire)
the development of improved quantum technologies

Y. Zeng, Z.Y. Zhou, E. Rinaldi, CG, F. Nori, PRL 131, 050601 (2023)
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Thank you for your attention!
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