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Modelling a Stochastic Process

Suppose we have a stochastic process . . .X−3X−2X−1X0X1X2X3 . . .

Task: (Statistically) replicate the future behaviour of the process P(
−→
X |←−x )

Storing the entire past is infeasible. . .
. . .we must extract the useful information

Compression by encoding function f :
←−X → σM

Update function to produce outputs Λ : σM → σM ×X
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Modelling a Stochastic Process

Memory cost: Cf = −Tr(ρ log2[ρ]) (Note: ρ =
∑

m P(m)σm)

Causal state encoding function

fε(
←−x ) = fε(

←−x ′)⇔ P(
−→
X |←−X =←−x ) = P(

−→
X |←−X =←−x ′)

Provably memory-minimal classical encoding

These minimal classical models
still store redundant information

Fully distinguishable memory states give rise to partially distinguishable futures
fε :
←−X → {|j⟩}

C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104 817 (2001)
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Quantum Compression Advantage

Quantum encodings can mitigate some of this redundancy
fq :
←−X → {|σj⟩}

Whenever the ε-machine stores redundant information. . .
. . . a quantum model can do better!

Cµ > I (
←−
X ;
−→
X ) ⇔ Cq < Cµ

Scaling advantage Experimentally implemented

M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Nat. Comm. 3 762 (2012)
T. J. Elliott and M. Gu, npj Quantum Information 4 18 (2018)
K.-D. Wu et al., Nature Communications 14 2624 (2023)
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Adaptive Agents

What about systems that modify behaviour in response to environmental input?

For example, AI, self-driving cars, chatbots, and trading algorithms

These are adaptive agents

Process replaced by a strategy

There is a trade-off between strategy complexity and memory cost

Can quantum technologies provide a competitive edge?

T. J. Elliott et al., Phys. Rev. X 12 011007 (2022)
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Anatomy of an Adaptive Agent

An adaptive agent is defined by:

X Stimuli (inputs) the agent can recognise
Y Actions (outputs) the agent can perform
{σm} The agent’s memory states

f :
←−X ×←−Y → {σm} The agent’s memory encoding function

Λ : X × {σm} → Y × {σm} The agent’s policy function

These enable the agent to implement a strategy P(Y |←−X ,←−Y ,X )

Minimal classical agents:

fε(
←−z ) = fε(

←−z ′)⇔ P(
−→
Y |←−z ,−→x ) = P(

−→
Y |←−z ′,−→x )∀−→x

Quantum agents: {σm} are quantum states, Λ a quantum channel

T. J. Elliott et al., Phys. Rev. X 12 011007 (2022)
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Quantum-Enhanced Adaptive Agents

Provably memory-minimal form of a quantum adaptive agent:

U|σs⟩|x⟩|0⟩|0⟩ =
∑
y

√
P(y |x , s)|σλ(z,s)⟩|x⟩|y⟩|ψ(z , s)⟩

Memory states pure and one-to-one with causal states

Classical inputs and outputs
Quantum processing only within agent

T. J. Elliott et al., Phys. Rev. X 12 011007 (2022)
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Quantum-Enhanced Adaptive Agents

Algorithm Systematic quantum agent encoding
Inputs: Causal states S, transition probabilities P(Y |X , S), and update rule λ(z , s)
Outputs: Quantum memory states {|σs⟩}, evolution operator U

1: Construct the set of multivariate polynomial equations

cxss′ =
∑
y

√
P(y |x , s)P(y |x , s ′)

∏
x′

cx
′

λ(z,s)λ(z,s′) (1)

defined ∀s, s ′ ∈ S, x ∈ X and solve to obtain {cxss′}
2: Use a reverse Gram-Schmidt procedure to construct quantum memory states

{|σs⟩} from overlaps css′ =
∏

x c
x
ss′ , and junk states {|ψ(z , s)⟩} from overlaps

d z
ss′ =

∏
x′ ̸=x c

x′
ss′

3: Construct the columns of U explicitly defined
4: Use a Gram-Schmidt procedure to fill the remaining columns of U, ensuring orthogo-

nality with existing columns

Quantum advantage unless for all possible pairs of states ∃−→x that leads to
perfectly distinguishable future action sequences

T. J. Elliott et al., Phys. Rev. X 12 011007 (2022)
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Scalable Quantum Advantage

Example: Resettable stochastic clocks

0 δt . . . nδt . . .

1 : 1− Φ(n+1)
Φ(n)

|0

0 : 1|1

0 : Φ(n+1)
Φ(n)

|0

Φ(t): Probability of ‘survival’ to time t without ticking under natural evolution
δt: Resolution of the coarse-grained timesteps

Inputs
x = 0 Evolve naturally
x = 1 Reset

Outputs
x = 0 No Tick
x = 1 Tick

We expect memory cost to
increase with 1/δt

True for classical agents. . .
. . . but not for quantum!
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Scalable Quantum Advantage

Scaling advantages can be found in more general settings

Consider n-bit discretisation of (finite) continuous parameter τ into δτ (n)

Distributional convergence: Memory state steady-state probability
(densities) converge exponentially with increasing precision

|P(n)(τ (n))/δτ (n) − P(n−1)(τ (n))/δτ (n−1)| < Kδτ (n)

Refined states approximately share equal weighting
Memory-overlap convergence: Memory state overlaps converge
exponentially with increasing precision

|c(n)
τ (n)τ ′(n) − c

(n−1)
τ (n)τ ′(n) | < Kδτ (n)

where cjk := ⟨σj |σk⟩
Refined states have very similar distributions

If these conditions are satisfied, Cq remains bounded as n→∞

Stochastic clocks: Satisfied if Φ(t) infinitely differentiable
and ∼ e−γt at long times

T. J. Elliott et al., Phys. Rev. X 12 011007 (2022)
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Thermodynamical Advantage for Quantum Agents

Quantum memory advantages correspond to reduced thermodynamical footprint

Agent must expend energy to clean up junk

For agents in parallel, work cost (per agent) to process L inputs at once given by

∆W

kbT ln 2
= S(Yin0:L) + S(X0:L) + S(M0)− S(X0:L,Y0:L,ML)
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Thermodynamical Advantage for Quantum Agents

Assume i.i.d. inputs, steady-state memory; work rate (per timestep cost) becomes

wL

kbT ln 2
= S(Yin) +

1
L
[I (X0:L,Y0:L;ML)− S(Y0:L|X0:L)]

Quantum advantage given by

w c
L − wq

L =
kbT ln 2

L
[I (X0:L,Y0:L;M

c
L)− I (X0:L,Y0:L;M

q
L )]

By data processing inequality, w c
L − wq

L > 0 if Cq < Cµ

For offline processing (L→∞)

w c − wq ∝ Cµ − Cq

Thus, analogous scalable quantum advantage in thermal efficiency
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Summary & Future

Summary:
Quantum computers can simulate complex processes with less memory
Framework can be extended to quantum-enhanced adaptive agents
Such quantum advantages can scale with increasing complexity
Superior thermal efficiency of quantum agents

Future:
Quantum advantage in memory dimension
Applications of memory-efficient quantum agents
Incorporation with quantum ‘speed-ups’ for agents
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Thanks for listening!

Mile Gu Andrew Garner Jayne Thompson
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