Quantum Algorithm for Robust Optimizaiton via Stochastic-Gradient Online Learning Debbie Lim, João F. Doriguello, Patrick Rebentrost

Funded by the European Union

NextGenerationEU

Robust convex optimization

- Robust convex optimization
- Motivation

- Robust convex optimization
- Motivation
- Ben-Tal et.al's dual-subgradient robust optimizaiton algorithm

- Robust convex optimization
- Motivation
- Ben-Tal et.al's dual-subgradient robust optimizaiton algorithm
- Achieving a speedup

- Robust convex optimization
- Motivation
- Ben-Tal et.al's dual-subgradient robust optimizaiton algorithm
- Achieving a speedup
- Applications

- Robust convex optimization
- Motivation lacksquare
- Ben-Tal et.al's dual-subgradient robust optimization algorithm
- Achieving a speedup
- Applications
- Conclusion

Robust convex optimization

$f_0(x)$

Convex optimization minimize subject to $f_i(x, u_i) \le 0$, $\forall i \in [m]$ $x \in \mathcal{D}$

- $u_1, \dots, u_m \in \mathbb{R}^d$ are fixed parameters. • f_0, \cdots, f_m are convex in x.
- Domain $\mathcal{D} \subseteq \mathbb{R}^n$ is convex.

minimize $f_0(x)$

Robust convex optimization subject to $f_i(x, u_i) \le 0$, $\forall u_i \in \mathcal{U}$, $\forall i \in [m]$ $x \in \mathcal{D}$

• f_0, \dots, f_m are convex in x. • f_1, \dots, f_m are concave in u_1, \dots, u_m . • Domain $\mathcal{D} \subseteq \mathbb{R}^n$ and uncertainty set $\mathcal{U} \subseteq \mathbb{R}^d$ are convex.

Optimization problem \rightarrow feasibility problem

Optimization problem \rightarrow **feasibility problem**

Use binary search over its optimal values

Optimization problem \rightarrow feasibility problem

Use binary search over its optimal values

Addresses the issue of data inaccuracy

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998
- Computational cost for large scale problems can be highly prohibitive

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998
- Computational cost for large scale problems can be highly prohibitive
- A meta-algorithm to approximately solve the robust counterpart of a convex optimisation problem, using only an algorithm for the original optimization formulation

Dual-subgradient robust optimization algorithm

Oracle-Based Robust Optimization via Online Learning

 $\frac{8}{105}(x+\sqrt{x})$

Aharon Ben-Tal Technion abental@ie.technion.ac.il

Tomer Koren Technion tomerk@technion.ac.il Elad Hazan Technion ehazan@ie.technion.ac.il

Shie Mannor Technion shie@ee.technion.ac.il

February 27, 2014

• Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(u_i)_j\rangle$

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(u_i)_j\rangle$
- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \to |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- \rangle

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(u_i)_j\rangle$
- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \to |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathscr{O}_{\mathscr{P}}: u \to \operatorname{argmin}_{q \in \mathscr{U}} ||q u||_2$

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(u_i)_i\rangle$
- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathscr{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathscr{U}$ as input. Outputs $x \in \mathscr{D}$ such that
 - $f_i(x, u_i) \leq \epsilon, \forall i \in [m]$
 - or returns "INFEASIBLE" if $\nexists x \in \mathscr{D}$ such that $f_i(x, u_i) \le 0, \forall i \in [m]$

• Initialize noise parameters $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;

• For
$$t = 0$$
 to $T - 1$, do

• **Output:**
$$\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}$$

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

• Initialize noise parameters $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$
 - For $i = 1, \dots, m$, d0

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $\left(u_1^{(0)}, \dots, u_m^{(0)}\right) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$
 - For $i = 1, \dots, m$, d0

•
$$u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)$$

• EndFor

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $\left(u_1^{(0)}, \dots, u_m^{(0)}\right) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

• For
$$i = 1, \dots, m$$
, d0

•
$$u_i^{(t+1)} = \mathcal{O}_{\mathscr{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)$$

• EndFor

•
$$x^{(t+1)} = \mathcal{O}_{\epsilon}\left(u_1^{(t+1)}, \cdots, u_m^{(t+1)}\right)$$

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $\left(u_1^{(0)}, \dots, u_m^{(0)}\right) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

• For
$$i = 1, \dots, m$$
, d0

•
$$u_i^{(t+1)} = \mathcal{O}_{\mathscr{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)$$

• EndFor

•
$$x^{(t+1)} = \mathcal{O}_{\epsilon} \left(u_1^{(t+1)}, \cdots, u_m^{(t+1)} \right)$$

• If oracle declares infeasibility

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}}: u \to \operatorname{argmin}_{q \in \mathcal{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

- Initialize noise parameters $\left(u_1^{(0)}, \dots, u_m^{(0)}\right) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

• For
$$i = 1, \dots, m$$
, d0

•
$$u_i^{(t+1)} = \mathcal{O}_{\mathscr{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)$$

• EndFor

•
$$x^{(t+1)} = \mathcal{O}_{\epsilon}\left(u_1^{(t+1)}, \cdots, u_m^{(t+1)}\right)$$

- If oracle declares infeasibility
 - Return "INFEASIBLE"
- Endlf
- EndFor

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \operatorname{argmin}_{q \in \mathscr{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

Ben-Tal et al.'s algorithm

- Initialize noise parameters $\left(u_1^{(0)}, \dots, u_m^{(0)}\right) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
- For t = 0 to T 1, do
 - $\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

• For
$$i = 1, \dots, m$$
, d0

•
$$u_i^{(t+1)} = \mathcal{O}_{\mathscr{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)$$

• EndFor

•
$$x^{(t+1)} = \mathcal{O}_{\epsilon}\left(u_1^{(t+1)}, \cdots, u_m^{(t+1)}\right)$$

- If oracle declares infeasibility
 - Return "INFEASIBLE"
- Endlf
- EndFor

• **Output:**
$$\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}$$

- Subgradient oracle $\mathcal{O}_{\nabla} : |i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_{u} f_{i}(x, u_{i}))_{j}\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \operatorname{argmin}_{q \in \mathscr{U}} \|q u\|_2$
- Optimization oracle \mathcal{O}_{ϵ} : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$f_i(x, u_i) \leq \epsilon, \forall i \in [m]$$

or returns "INFEASIBLE" if $\nexists x \in \mathscr{D}$ such that

$$f_i(x, u_i) \leq 0, \forall i \in [m]$$

Quantum Robust Optimization

• Quantum circuit model

- Quantum circuit model ullet
 - An application of a quantum gate is equivalent to performing an elementary operation

- Quantum circuit model ullet
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet

- Quantum circuit model ullet
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model lacksquare
 - Arithmetic operations take constant time

- Quantum circuit model lacksquare
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet
 - Arithmetic operations take constant time
 - Ignores issues from fixed-point representation of real numbers

- Quantum circuit model lacksquare
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet
 - Arithmetic operations take constant time
 - Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input \bullet

- Quantum circuit model lacksquare
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet
 - Arithmetic operations take constant time
 - Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

- Quantum circuit model lacksquare
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet
 - Arithmetic operations take constant time
 - Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input \bullet
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

$$|x_i\rangle|0\rangle \rightarrow |x_i\rangle$$

 $\left(\sqrt{x_i} \left| 0 \right\rangle + \sqrt{1 - x_i} \left| 1 \right\rangle \right)$

- Quantum circuit model \bullet
 - An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model \bullet
 - Arithmetic operations take constant time
 - Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input ullet
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

$$|x_i\rangle|0\rangle \to |x_i\rangle\Big($$

on a superposition of $|x_i\rangle$ in O(1) time

 $\left(\sqrt{x_i} \left| 0 \right\rangle + \sqrt{1 - x_i} \left| 1 \right\rangle \right)$

Instead of

Querying the subgradient oracle on all the entries of every subgradient

$\nabla_1, \dots, \nabla_m \leftarrow \text{Query } \mathcal{O}_{\nabla} \text{ with } x^{(t)}, u_1^{(t)}, \dots, u_m^{(t)}$

Instead of

Querying the subgradient oracle on all the entries of every subgradient

We do

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the sampled indices to create stochastic subgradients.

Instead of

Querying the subgradient oracle on all the entries of every subgradient

Updating the noise parameters using subgradients

We do

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the sampled indices to create stochastic subgradients.

Instead of

Querying the subgradient oracle on all the entries of every subgradient

Updating the noise parameters using subgradients

We do

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the sampled indices to create stochastic subgradients.

Update the noise parameters using **stochastic** subgradients.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm **Input:** Target accuracy $\epsilon > 0$, failure probability $\delta \in (0, 1)$, param 1: Set $T = \left[\frac{1}{\epsilon^2} \max\left\{4F \log(\frac{m}{\delta}), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{\epsilon}\right)\right\}\right]$ and $\eta^{(t)} =$ 2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily; 3: for t = 0 to T - 1 do

Sample s pairs $S^{(t)} = ((i_1, j_1), \dots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$ 4: by measuring s copies of the quantum state $\sum_{i=1}^{m} \sum_{j=1}^{d} \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact 1), where

$$p^{(t)}(i,j) = \frac{\left| \left(\nabla_u f_i(x^{(t)}, u_i^{(t)}) \right)_j \right|}{\sum_{k=1}^m \left\| \nabla_u f_k(x^{(t)}, u_k^{(t)}) \right\|_1}$$

- Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \|\nabla_u f_k(x^{(t)}, u_k^{(t)})\|_1$ with relative error 1/4 (Fact 2); 5:Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}, x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
- 6:

$$(g_i^{(t)})_j = \frac{|\{(k,\ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{\text{sign}\left[(\nabla_u f_{j,k}) - \frac{1}{2} + \frac{1}{2} +$$

for i in $S^{(t)}$ do $u_i^{\prime(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)};$ $u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i^{\prime(t+1)});$ 7:8: 9:

end for 10:

11:
$$x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \dots, u_m^{(t+1)})$$

- if oracle declares infeasibility then return INFEASIBLE; 12:
- end if 13:

14: **end for**

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)};$

neters
$$D, G_1, G_2, G_\infty, F;$$

= $\frac{4D}{3\sqrt{t+1}} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{s} \right)^{-1/2};$

 $\left[\frac{f_i(x^{(t)}, u^{(t)}_i))_j}{\gamma(t)}\right]_{-1};$

 \triangleright Update noise memory

$$\begin{aligned} \overline{\text{Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm} \\ \overline{\text{Input: Target accuracy } \epsilon > 0, failure probability } \delta \in (0, 1), \text{ parameters } D, G_1, G_2, G_{\infty}, F; \\ 1: \text{ Set } T = \begin{bmatrix} \frac{1}{\epsilon^2} \max \left\{ 4F \log(\frac{m}{\delta}), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1 G_{\infty} - G_2^2}{s} \right) \right\} \end{bmatrix} \text{ and } \eta^{(t)} = \frac{4D}{3\sqrt{t+1}} \left(G_2^2 + \frac{G_1 G_{\infty} - G_2^2}{s} \right)^{-1/2}; \\ 2: \text{ Initialize } (u_1^{(0)}, \dots, u_m^{(0)}) \in \mathcal{U}^m \text{ and } x^{(0)} \in \mathcal{D} \text{ arbitrarily;} \\ 3: \text{ for } t = 0 \text{ to } T - 1 \text{ do} \\ 4: \quad \text{ Sample } s \text{ pairs } S^{(t)} = ((i_1, j_1), \dots, (i_s, j_s)) \in ([m] \times [d])^s \text{ with probability at least } 1 - \delta/T \\ \text{ by measuring } s \text{ copies of the quantum state } \sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle \text{ (Fact 1), where} \\ p^{(t)}(i,j) = \frac{\left| \left(\nabla_u f_i(x^{(t)}, u_i^{(t)}) \right)_j \right|}{\sum_{k=1}^m \left\| \nabla_u f_k(x^{(t)}, u_k^{(t)}) \right\|_1}; \\ 5: \quad \text{ Compute an estimate } \Gamma^{(t)} \in \mathbb{R} \text{ of } \sum_{k=1}^m \left\| \nabla_u f_k(x^{(t)}, u_k^{(t)}) \right\|_1 \text{ with relative error } 1/4 \text{ (Fact 2)}; \\ 6: \quad \text{ Query the oracle } \mathcal{O}_{\nabla} \text{ with inputs } (i,j) \in S^{(t)}, x^{(t)}, \text{ and } u_i^{(t)}, \text{ to prepare } g_i^{(t)} \in \mathbb{R}^d \text{ as} \\ (g_i^{(t)})_j = \frac{\left| \{(k, \ell) \in S^{(t)} : k = i, \ell = j\} \right|}{s} \frac{\text{sign} \left[(\nabla_u f_i(x^{(t)}, u_i^{(t)}))_j \right]}{(\Gamma^{(t)})^{-1}}; \end{aligned}$$

7: **for**
$$i$$
 in $S^{(t)}$ **do**
8: $u_i^{\prime(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)};$
9: $u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i^{\prime(t+1)});$

end for 10:

11:
$$x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \dots, u_m^{(t+1)});$$

- if oracle declares infeasibility then return INFEASIBLE; 12:
- end if 13:

14: **end for**

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)};$

ightarrow Update noise memory

$$\begin{aligned} \overline{\text{Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm} \\ \overline{\text{Input: Target accuracy } \epsilon > 0, failure probability } \delta \in (0, 1), \text{ parameters } D, G_1, G_2, G_{\infty}, F; \\ 1: \text{ Set } T = \left[\frac{1}{\epsilon^2} \max\left\{4F \log(\frac{m}{\delta}), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s}\right)\right\}\right] \text{ and } \eta^{(t)} = \frac{4D}{3\sqrt{t+1}} \left(G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s}\right)^{-1/2}; \\ 2: \text{ Initialize } (u_1^{(0)}, \dots, u_m^{(0)}) \in \mathcal{U}^m \text{ and } x^{(0)} \in \mathcal{D} \text{ arbitrarily;} \\ 3: \text{ for } t = 0 \text{ to } T - 1 \text{ do} \\ 4: \quad \text{ Sample } s \text{ pairs } S^{(t)} = ((i_1, j_1), \dots, (i_s, j_s)) \in ([m] \times [d])^s \text{ with probability at least } 1 - \delta/T \\ \text{ by measuring } s \text{ copies of the quantum state } \sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i, j)} |i\rangle |j\rangle \text{ (Fact I), where} \\ p^{(t)}(i, j) = \frac{\left|\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)_j\right|}{\sum_{k=1}^m \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|_1}; \\ 5: \quad \text{ Compute an estimate } \Gamma^{(t)} \in \mathbb{R} \text{ of } \sum_{k=1}^m \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|_1 \text{ with relative error } 1/4 \text{ (Fact 2)}; \\ 6: \quad \text{ Query the oracle } \mathcal{O}_{\nabla} \text{ with inputs } (i, j) \in S^{(t)}, x^{(t)}, \text{ and } u_i^{(t)}, \text{ to prepare } g_i^{(t)} \in \mathbb{R}^d \text{ as} \\ (g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}\right|}{s} \frac{\text{sign}\left[(\nabla_u f_i(x^{(t)}, u_i^{(t)}))_j\right]}{(\Gamma^{(t)})^{-1}}; \\ \end{array}$$

7: **for**
$$i$$
 in $S^{(t)}$ **do**
8: $u_i^{\prime(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)};$
9: $u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i^{\prime(t+1)});$

end for 10:

11:
$$x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \dots, u_m^{(t+1)});$$

- if oracle declares infeasibility then return INFEASIBLE; 12:
- end if 13:

14: **end for**

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)};$

ightarrow Update noise memory

Quantum multi-sampling:
samples *s* numbers from [*n*] in
$$O\left(\sqrt{sm}\log\left(\frac{1}{\delta}\right)\right)$$
 time.

Quantum multi-sampling: samples s numbers from [n] in 1 $O \sqrt{sm \log}$ time.

Quantum multi-sampling:
samples *s* numbers from [*n*] in
$$O\left(\sqrt{sm}\log\left(\frac{1}{\delta}\right)\right)$$
 time.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
Input: Target accuracy
$$\epsilon > 0$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
1: Set $T = \lfloor \frac{1}{t^2} \max \{4F \log(\frac{m}{\delta}), \frac{235D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{5})\}\]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
3: for $t = 0$ to $T - 1$ do
4: Sample s pairs $S^{(t)} = ((i_1, j_1), \ldots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
by measuring s copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i, j)} |i\rangle |j\rangle$ (Fact 1), where
 $p^{(t)}(i, j) = \frac{|(\nabla uf_i(x^{(t)}, u_i^{(t)}))_j|}{\sum_{k=1}^m ||\nabla uf_k(x^{(t)}, u_k^{(t)})|_1}$; with relative error $1/4$ (Fact 2);
6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
 $(g_i^{(t)})_j = \frac{|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{\text{sign}\left[(\nabla uf_i(x^{(t)}, u_i^{(t)}))_j\right]}{(\Gamma^{(t)})^{-1}}$;
7: for i in $S^{(t)}$ do
8: $u_i^{(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)}g_i^{(t)}$;
9: $u_i^{(t+1)} \leftarrow \mathcal{O}_e(u_1^{(t+1)})$;
10: end for
11: $x^{(t+1)} \leftarrow \mathcal{O}_e(u_1^{(t+1)})$;
12: if oracle declares infeasibility then return INFEASIBLE;
13: end if
14: end for
Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^T x^{(t)}$;

Quantum multi-sampling: samples s numbers from [n] in $\sqrt{sm \log}$ 0 time.

Quantum norm estimation

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
Input: Target accuracy
$$\epsilon > 0$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
1: Set $T = \lfloor \frac{1}{t^2} \max \{4F \log(\frac{m}{\delta}), \frac{235D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{5})\}\]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
3: for $t = 0$ to $T - 1$ do
4: Sample s pairs $S^{(t)} = ((i_1, j_1), \ldots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
by measuring s copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i, j)} |i\rangle |j\rangle$ (Fact 1), where
 $p^{(t)}(i, j) = \frac{|(\nabla uf_i(x^{(t)}, u_i^{(t)}))_j|}{\sum_{k=1}^m ||\nabla uf_k(x^{(t)}, u_k^{(t)})|_1}$; with relative error $1/4$ (Fact 2);
6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
 $(g_i^{(t)})_j = \frac{|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{\text{sign}\left[(\nabla uf_i(x^{(t)}, u_i^{(t)}))_j\right]}{(\Gamma^{(t)})^{-1}}$;
7: for i in $S^{(t)}$ do
8: $u_i^{(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)}g_i^{(t)}$;
9: $u_i^{(t+1)} \leftarrow \mathcal{O}_e(u_1^{(t+1)})$;
10: end for
11: $x^{(t+1)} \leftarrow \mathcal{O}_e(u_1^{(t+1)})$;
12: if oracle declares infeasibility then return INFEASIBLE;
13: end if
14: end for
Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^T x^{(t)}$;

Quantum multi-sampling:
samples *s* numbers from [*n*] in
$$O\left(\sqrt{sm}\log\left(\frac{1}{\delta}\right)\right)$$
 time.

Stochastic gradient satisfies

$$\mathbb{E}\left[g_{i}^{(t)}\right] = \lambda \nabla_{u} f_{i}\left(x^{(t)}, u_{i}^{(t)}\right)$$
$$\mathbb{E}\left[\left\|g_{i}^{(t)}\right\|_{2}^{2}\right] \leq \tilde{G}_{2}^{2}$$

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
Input: Target accuracy
$$\epsilon > 0$$
, failure probability $\delta \in (0, 1)$, parameters D, G_1, G_2, G_∞, F ;
1: Set $T = \begin{bmatrix} \frac{1}{c^2} \max \{4F \log(\frac{m}{\delta}), \frac{25D^2}{16}(G_2^2 + \frac{G_1G_\infty - G_2^2}{s})\} \end{bmatrix}$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}}(G_2^2 + \frac{G_1G_\infty - G_2^2}{s})^{-1/2}$;
2: Initialize $(u_1^{(0)}, \dots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in D$ arbitrarily;
3: for $t = 0$ to $T - 1$ do
4: Sample s pairs $S^{(t)} = ((i_1, j_1), \dots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
by measuring s copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact I), where
 $p^{(t)}(i,j) = \frac{|(\nabla u f_i(x^{(t)}, u_i^{(t)}))_j|}{\sum_{k=1}^m ||\nabla u f_k(x^{(t)}, u_k^{(t)})||_1}$;
5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m ||\nabla u f_k(x^{(t)}, u_k^{(t)})||_1$ with relative error 1/4 (Fact 2);
6: Query the oracle \mathcal{O}_{∇} with inputs $(i,j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
 $(g_i^{(t)})_j = \frac{|\{(k,\ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{sign[(\nabla u f_i(x^{(t)}, u_i^{(t)}))_j]}{(\Gamma^{(t)})^{-1}}$;
7: for i in $S^{(t)}$ do
8: $u_i^{(t+1)} \leftarrow \mathcal{D}_u(u_i^{(t+1)});$ \triangleright Update noise memory
11: $x^{(t+1)} \leftarrow \mathcal{O}_c(u_1^{(t+1)}, \dots, u_m^{(t+1)});$
12: if oracle declares infeasibility then return INFEASIBLE;
13: end if
14: end for
Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^T x^{(t)};$

Quantum multi-sampling:
samples *s* numbers from [*n*] in
$$O\left(\sqrt{sm}\log\left(\frac{1}{\delta}\right)\right)$$
 time.

Stochastic gradient satisfies

$$\mathbb{E}\left[g_{i}^{(t)}\right] = \lambda \nabla_{u} f_{i}\left(x^{(t)}, u_{i}^{(t)}\right)$$
$$\mathbb{E}\left[\left\|g_{i}^{(t)}\right\|_{2}^{2}\right] \leq \tilde{G}_{2}^{2}$$

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
Input: Target accuracy
$$\epsilon > 0$$
, failure probability $\delta \in (0, 1)$, parameters D, G_1, G_2, G_∞, F ;
1: Set $T = \begin{bmatrix} \frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta}), \frac{25D^2}{16}(G_2^2 + \frac{G_1G_\infty - G_2^2}{s})\} \end{bmatrix}$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}}(G_2^2 + \frac{G_1G_\infty - G_2^2}{s})^{-1/2}$;
2: Initialize $(u_1^{(0)}, \dots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
3: for $t = 0$ to $T - 1$ do
4: Sample s pairs $S^{(t)} = ((i_1, j_1), \dots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
by measuring s copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact I), where
 $p^{(t)}(i,j) = \frac{|(\nabla_u f_i(x^{(t)}, u_i^{(t)}))_j|}{\sum_{k=1}^m ||\nabla_u f_k(x^{(t)}, u_k^{(t)})||_1}$;
5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m ||\nabla_u f_k(x^{(t)}, u_k^{(t)})||_1$ with relative error $1/4$ (Fact 2);
6: Query the oracle \mathcal{O}_{∇} with inputs $(i,j) \in S^{(t)}$; $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
 $(g_i^{(t)})_j = \frac{|\{(k,\ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{sign [(\nabla_u f_i(x^{(t)}, u_i^{(t)}))_j]}{(\Gamma^{(t)})^{-1}}$;
7: for $i \ln S^{(t)}$ do
 $u_i^{(t+1)} \leftarrow \mathcal{P}_u(u_i^{(t+1)})$; On sampled indices \succ Update noise memory
11: $x^{(t+1)} \leftarrow \mathcal{O}_e(u_1^{(t+1)}, \dots, u_m^{(t+1)})$;
12: if oracle declares infeasibility then return INFEASIBLE;
13: end if
14: end for
Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^T x^{(t)}$;

Quantum multi-sampling:
samples *s* numbers from [*n*] in
$$O\left(\sqrt{sm}\log\left(\frac{1}{\delta}\right)\right)$$
 time.

Stochastic gradient satisfies

$$\mathbb{E}\left[g_{i}^{(t)}\right] = \lambda \nabla_{u} f_{i}\left(x^{(t)}, u_{i}^{(t)}\right)$$
$$\mathbb{E}\left[\left\|g_{i}^{(t)}\right\|_{2}^{2}\right] \leq \tilde{G}_{2}^{2}$$

Summary of results

When
$$T = \left[\frac{1}{\epsilon^2} \max\left\{4F\left(\frac{m}{\delta}\right), \frac{9}{4}(1+4\nu)^2 D^2 \widetilde{G}_2^2\right\}\right]$$
 and $\eta^{(t)} = \frac{1}{(1-\nu)^2}$

Algorithm	Calls to \mathcal{O}_{∇}	Calls to $\mathcal{O}_{\mathcal{P}}$	Calls
Ben-Tal <i>et. al</i>	$\frac{G_2^2 m dD^2}{\epsilon^2}$	$\frac{G_2^2 m D^2}{\epsilon^2}$	$\frac{G_2^2}{\epsilon}$

When
$$T = \left[\frac{1}{\epsilon^2} \max\left\{4F \log\left(\frac{m}{\delta}\right), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{s}\right)\right\}\right] \text{ and } \eta^{(t)} = \frac{4D}{3\sqrt{t+1}} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{s}\right)^{-1/2}$$

Algorithm	Calls to \mathcal{O}_{∇}	Calls
Our work	$\frac{\sqrt{G_1 G_\infty} G_2 \sqrt{mdD^2}}{\epsilon^2} \log\left(\frac{DG_2}{\epsilon\delta}\right)$	$\min\{G_1G_{\infty},$

$$\frac{D}{\widetilde{G}_2\sqrt{t+1}}$$

$$\frac{2}{2}$$

$$D \ge \max_{u,v \in \mathcal{U}} ||u - v||_{2}$$

$$F \ge \max_{x \in \mathcal{D}, u \in \mathcal{U}} |f_{i}(x, u)|$$

$$G_{2} \ge \max_{x \in \mathcal{D}, u \in \mathcal{U}} ||\nabla_{u} f_{i}(x, u)|$$

$$G_{1} \ge \sum_{k=1}^{\infty} ||\nabla_{u} f_{k}(x, u_{k})||_{1}$$

$$G_{\infty} \ge \max_{k \in [m]} ||\nabla_{u} f_{k}(x, u_{k})||_{1}$$

$$\forall x \in \mathcal{D}, \forall u_{1}, \dots, u_{m} \in \mathcal{U}$$

$$\frac{1}{\sigma} to \qquad Calls to \\ \mathcal{O}_{\epsilon} \\ G_{2}^{2}m \} \frac{D^{2}}{\epsilon^{2}} \qquad \frac{G_{2}^{2}D^{2}}{\epsilon^{2}} \\ \frac{G_{2}^{2}D^{2}}{\epsilon^{2}} \\ \frac{G_{2}^{2}D^{2}}{\epsilon^{2}} \\ \frac{C_{2}^{2}D^{2}}{\epsilon^{2}} \\ \frac{C_{2}$$

Robust linear programs

$\exists ? \quad x \in \mathscr{D}$ s.t. $(a_i + P_i u_i)^\top x - b_i \le 0, \quad \forall u_i \in \mathscr{U}, \quad i \in [m],$

$$\mathcal{U} = \{ u \in \mathbb{R}^d : \| u \|_2 \le \mathcal{D} \subseteq \{ x \in \mathbb{R}^n : \| x \|_1 \}$$

Robust linear programs

$\exists ? \qquad x \in \mathscr{D}$ s.t. $(a_i + P_i u_i)^\top x - b_i \le 0, \qquad \forall u_i \in \mathscr{U}, \quad i \in [m],$

$$\mathcal{U} = \{ u \in \mathbb{R}^d : \| u \|_2 \le \mathcal{D} \subseteq \{ x \in \mathbb{R}^n : \| x \|_1 \}$$

' 1 } ≤ 1 }

• *n* assets, *m* markets,

• *n* assets, *m* markets,

• Portfolio vector: $x \in \mathbb{R}^n_{\geq 0}$ such th

hat
$$\sum_{i=1}^{n} x_i = 1$$
.

• *n* assets, *m* markets,

Portfolio vector: $x \in \mathbb{R}^n_{\geq 0}$ such the

• Expected return of assets in market $i: r_i \in \mathbb{R}^n$, $\forall i \in [m]$.

hat
$$\sum_{i=1}^{n} x_i = 1$$
.

• *n* assets, *m* markets,

Portfolio vector: $x \in \mathbb{R}^n_{>0}$ such th

• Expected return of assets in market $i: r_i \in \mathbb{R}^n$, $\forall i \in [m]$.

$$\sum_{i=1}^{n} x_i = 1.$$

Find a portfolio that maximizes the return (without considering the variance)

 $\mathcal{U} = \{ u \in \mathbb{R}^d : \| u \|_2 \le 1 \}$ $\mathcal{D} \subseteq \{ X \in \mathbb{S}_n^+ : \| X \|_F \le 1 \}$

Robust semidefinite programs

 $\mathcal{U} = \{ u \in \mathbb{R}^d : \| u \|_2 \le 1 \}$ $\mathcal{D} \subseteq \{ X \in \mathbb{S}_n^+ : \| X \|_F \le 1 \}$

Robust semidefinite programs

Dictionary

Definitions from Oxford Languages · Learn more

/trʌs/

noun

1. a framework, typically consisting of <u>rafters</u>, posts, and <u>struts</u>, supporting a roof, bridge, or other structure.

"roof trusses"

Dictionary

Definitions from Oxford Languages · Learn more

/trʌs/

noun

1. a framework, typically consisting of <u>rafters</u>, posts, and <u>struts</u>, supporting a roof, bridge, or other structure.

"roof trusses"

 Find the right geometry, topology and size of a truss structure to withstand external loads.

Dictionary

Definitions from Oxford Languages · Learn more

/trʌs/

noun

1. a framework, typically consisting of <u>rafters</u>, posts, and <u>struts</u>, supporting a roof, bridge, or other structure.

"roof trusses"

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.

Dictionary

Definitions from Oxford Languages · Learn more

/trʌs/

noun

1. a framework, typically consisting of <u>rafters</u>, posts, and <u>struts</u>, supporting a roof, bridge, or other structure.

"roof trusses"

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.
- Can be cast as a robust SDP.

Dictionary

Definitions from Oxford Languages · Learn more

/trʌs/

noun

1. a framework, typically consisting of <u>rafters</u>, posts, and <u>struts</u>, supporting a roof, bridge, or other structure.

"roof trusses"

Runtime dependent on the Frobenius, ℓ_{∞} -norm of the matrices that control the shape of the ellipsoid.

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.
- Can be cast as a robust SDP.

Quantum meta-algorithm for robust optimization

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications
 - Robust linear programs

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications
 - Robust linear programs
 - Robust semidefinite programs

