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Robust convex optimization
minimize f0(x)

subject to fi(x, ui) ≤ 0, ∀ui ∈ 𝒰, ∀i ∈ [m]
x ∈ 𝒟

•  are convex in . 

•  are concave in . 

•Domain  and uncertainty set  are convex. 

f0, ⋯, fm x
f1, ⋯, fm u1, ⋯, um

𝒟 ⊆ ℝn 𝒰 ⊆ ℝd
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Why robust optimization 

• Addresses the issue of data inaccuracy 

•  First introduced by Ben-Tal and Nemirovski in 1998

• Computational cost for large scale  problems can be highly prohibitive 

• A meta-algorithm to approximately solve the robust counterpart of a 
convex optimisation problem, using only an algorithm for the original 
optimization formulation 



Dual-subgradient robust 
optimization algorithm
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• Subgradient oracle 𝒪∇ : | i⟩ | j⟩ | 0̄⟩ → | i⟩ | j⟩ | (∇u fi(x, ui))j⟩

• Projection oracle 𝒪𝒫 : u → argminq∈𝒰∥q − u∥2

• Optimization oracle  Takes  as input. Outputs  such that 𝒪ϵ : u1, ⋯, um ∈ 𝒰 x ∈ 𝒟

fi (x, ui) ≤ ϵ, ∀i ∈ [m]

or returns “INFEASIBLE” if  such that ∄x ∈ 𝒟

fi (x, ui) ≤ 0,∀i ∈ [m]
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• For  to , do  

• Output: 

(u(0)
1 , …, u(0)

m ) ∈ 𝒰m x(0) ∈ 𝒟

t = 0 T − 1

x̄ =
1
T

T

∑
t=1

x(t)
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m )
• If oracle declares infeasibility

• Return “INFEASIBLE”

• EndIf

• EndFor 

• Output: x̄ =
1
T

T

∑
t=1

x(t)
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Quantum computational model
• Quantum circuit model 

• An application of a quantum gate is equivalent to performing an elementary operation

• Quantum arithmetic model 

• Arithmetic operations take constant time 

• Ignores issues from fixed-point representation of real numbers 

• Query complexity: maximum number of queries the algorithm makes on any input

• Given states , where  for , we can do |x1⟩, ⋯, |xn⟩ xi ∈ [0,1] i ∈ [n]

|xi⟩ |0⟩ → |xi⟩( xi |0⟩ + 1 − xi |1⟩)
    on a superposition of  in  time|xi⟩ O(1)
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•   quadratic 
speedup in the dimension of the noise 
parameters .


•  is comparable to   quadratic 
speedup in .  

G1G∞ = O (mG2
2) ⇒

d

G1G∞ G2
2 ⇒

m = 𝒰 , d
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𝒰 = {u ∈ ℝd : u 2 ≤ 1}
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Global maximum return portfolio (GMVP) 

•  assets,  markets, n m

• Portfolio vector:   such that . x ∈ ℝn
≥0

n

∑
i=1

xi = 1

• Expected return of assets in market : , . i ri ∈ ℝn ∀i ∈ [m]

Find a portfolio that maximizes the return (without considering the variance)



Robust semidefinite programs
∃? X ∈ 𝒟

s.t. Ai +
d

∑
j=1

uijPj ∙ X − bi ≤ 0, ∀ui ∈ 𝒰, i ∈ [m],

𝒟 ⊆ {X ∈ 𝕊+
n : X F ≤ 1}

𝒰 = {u ∈ ℝd : u 2 ≤ 1}



Robust semidefinite programs

Truss Topological

 Design

∃? X ∈ 𝒟

s.t. Ai +
d

∑
j=1

uijPj ∙ X − bi ≤ 0, ∀ui ∈ 𝒰, i ∈ [m],

𝒟 ⊆ {X ∈ 𝕊+
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𝒰 = {u ∈ ℝd : u 2 ≤ 1}
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Truss topological design (TTD)

• Find the right geometry, topology and size of 
a truss structure to withstand external loads. 

• Information on external load is not perfectly 
known, assumed to belong to an uncertainty 
set. 

• Can be cast as a robust SDP. 

Runtime dependent on the Frobenius, -norm of the matrices that control the 
shape of the ellipsoid.

ℓ∞
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