Quantum Algorithm for Robust Optimizaiton via Stochastic-Gradient Online Learning Debbie Lim, João F. Doriguello, Patrick Rebentrost

 \Box

Funded by the European Union

NextGenerationEU

• Robust convex optimization

- Robust convex optimization
- Motivation

- Robust convex optimization
- Motivation
- Ben-Tal *et.al*'s dual-subgradient robust optimizaiton algorithm

- Robust convex optimization
- Motivation
- Ben-Tal *et.al*'s dual-subgradient robust optimizaiton algorithm
- Achieving a speedup

- Robust convex optimization
- Motivation
- Ben-Tal *et.al*'s dual-subgradient robust optimizaiton algorithm
- Achieving a speedup
- Applications

- Robust convex optimization
- Motivation
- Ben-Tal *et.al*'s dual-subgradient robust optimizaiton algorithm
- Achieving a speedup
- Applications
- Conclusion

Robust convex optimization

$f_0(x)$ $\int_i^c (x, u_i) \leq 0, \qquad \forall i \in [m]$

Convex optimization **minimize** *f* **subject to** *f x* ∈ 9

- $u_1, \dots, u_m \in \mathbb{R}^d$ are fixed parameters. $\cdot f_0, \cdots, f_m$ are convex in *x*. , $u_m \in \mathbb{R}^d$
- Domain $\mathcal{D} \subseteq \mathbb{R}^n$ is convex.

Robust convex optimization **minimize** *f* $f_0(x)$ **subject to** *f* $\mathcal{F}_i(x, u_i) \leq 0, \qquad \forall u_i \in \mathcal{U}, \qquad \forall i \in [m].$

 $\cdot f_0, \cdots, f_m$ are convex in *x*. $\cdot f_1, \cdots, f_m$ are concave in u_1, \cdots, u_m . • Domain $\mathscr{D} \subseteq \mathbb{R}^n$ and uncertainty set $\mathscr{U} \subseteq \mathbb{R}^d$ are convex.

x ∈ 9

Optimization problem → **feasibility problem**

Optimization problem → **feasibility problem**

Use binary search over its optimal values

Optimization problem → **feasibility problem**

Use binary search over its optimal values

-
-
-
-
-
-
-

• Addresses the issue of data inaccuracy

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998
- Computational cost for large scale problems can be highly prohibitive

- Addresses the issue of data inaccuracy
- First introduced by Ben-Tal and Nemirovski in 1998
- Computational cost for large scale problems can be highly prohibitive
- A meta-algorithm to approximately solve the robust counterpart of a convex optimisation problem, using only an algorithm for the original optimization formulation

Dual-subgradient robust optimization algorithm

Oracle-Based Robust Optimization via Online Learning

 $\frac{8}{105}(x+\sqrt{y})$

Aharon Ben-Tal Technion abental@ie.technion.ac.il

Tomer Koren Technion tomerk@technion.ac.il

Elad Hazan Technion ehazan@ie.technion.ac.il

Shie Mannor Technion shie@ee.technion.ac.il

February 27, 2014

• Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle | (u_i)_j\rangle$

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle | (u_i)_j\rangle$
- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |0\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
-

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle | (u_i)_j\rangle$
- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |0\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}} : u \to \text{argmin}_{q \in \mathcal{U}} ||q u||_2$

- Noise memory: $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle | (u_i)_j\rangle$
- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |0\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathcal{P}} : u \to \text{argmin}_{q \in \mathcal{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that
	- $f_i(x, u_i) \leq \epsilon, \forall i \in [m]$
	- or returns "INFEASIBLE" if $\exists x \in \mathcal{D}$ such that $f_i(x, u_i) \leq 0, \forall i \in [m]$

• Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;

• For
$$
t = 0
$$
 to $T - 1$, do

. Output:
$$
\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}
$$

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{q \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

• Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$
	- For $i = 1, \dots, m$, d0

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$
	- For $i = 1, \dots, m$, d0

•
$$
u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)
$$

• EndFor

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

• For
$$
i = 1, \dots, m
$$
, **do**

•
$$
u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)
$$

• EndFor

•
$$
x^{(t+1)} = \mathcal{O}_\epsilon \left(u_1^{(t+1)}, \dots, u_m^{(t+1)} \right)
$$

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

• For
$$
i = 1, \dots, m
$$
, **do**

$$
\bullet \ \ u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)
$$

• EndFor

•
$$
x^{(t+1)} = \mathcal{O}_\epsilon \left(u_1^{(t+1)}, \dots, u_m^{(t+1)} \right)
$$

• If oracle declares infeasibility

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_j\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

• For
$$
i = 1, \dots, m
$$
, do

•
$$
u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)
$$

• EndFor

•
$$
x^{(t+1)} = \mathcal{O}_\epsilon \left(u_1^{(t+1)}, \dots, u_m^{(t+1)} \right)
$$

- **• If** oracle declares infeasibility
	- Return "INFEASIBLE"
- **• EndIf**
- **• EndFor**
- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_i\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

Ben-Tal *et al.'*s algorithm

- Initialize noise parameters $\left(u_1^{(0)},...,u_m^{(0)}\right) \in \mathscr{U}^m$ and $x^{(0)} \in \mathscr{D}$ arbitrarily;
- For $t=0$ to $T-1$, do
	- $\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

• For
$$
i = 1, \dots, m
$$
, do

$$
\bullet \ \ u_i^{(t+1)} = \mathcal{O}_{\mathcal{P}}\left(u_i^{(t)} + \eta \nabla_i^{(t)}\right)
$$

• EndFor

•
$$
x^{(t+1)} = \mathcal{O}_\epsilon \left(u_1^{(t+1)}, \dots, u_m^{(t+1)} \right)
$$

- **• If** oracle declares infeasibility
	- Return "INFEASIBLE"
- **• EndIf**
- **• EndFor**

. Output:
$$
\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}
$$

- Subgradient oracle \mathcal{O}_{∇} : $|i\rangle |j\rangle |\bar{0}\rangle \rightarrow |i\rangle |j\rangle |(\nabla_u f_i(x, u_i))_i\rangle$
- Projection oracle $\mathcal{O}_{\mathscr{P}}: u \to \text{argmin}_{a \in \mathscr{U}} ||q u||_2$
- Optimization oracle \mathcal{O}_ϵ : Takes $u_1, \dots, u_m \in \mathcal{U}$ as input. Outputs $x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \le \epsilon, \forall i \in [m]
$$

or returns "INFEASIBLE" if $\nexists x \in \mathcal{D}$ such that

$$
f_i(x, u_i) \leq 0, \forall i \in [m]
$$

Quantum Robust Optimization

• Quantum circuit model

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time
	- Ignores issues from fixed-point representation of real numbers

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time
	- Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time
	- Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time
	- Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

$$
|x_i\rangle\,|\,0\rangle\rightarrow|x_i\rangle\Big(
$$

 $\left(\sqrt{x_i} \left|0\right\rangle + \sqrt{1-x_i} \left|1\right\rangle\right)$

- Quantum circuit model
	- An application of a quantum gate is equivalent to performing an elementary operation
- Quantum arithmetic model
	- Arithmetic operations take constant time
	- Ignores issues from fixed-point representation of real numbers
- Query complexity: maximum number of queries the algorithm makes on any input
- Given states $|x_1\rangle, \dots, |x_n\rangle$, where $x_i \in [0,1]$ for $i \in [n]$, we can do

$$
|x_i\rangle\,|\,0\rangle\rightarrow|x_i\rangle\Big(
$$

on a superposition of $|x_i\rangle$ in $O(1)$ time

 $\left(\sqrt{x_i} \left|0\right\rangle + \sqrt{1-x_i} \left|1\right\rangle\right)$

Instead of

Querying the subgradient oracle on all the entries of every subgradient

$\nabla_1, ..., \nabla_m \leftarrow$ Query \mathcal{O}_{∇} with $x^{(t)}, u_1^{(t)}, ..., u_m^{(t)}$

Instead of We do

Querying the subgradient oracle on all the entries of every subgradient

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the **sampled** indices to create **stochastic** subgradients.

Instead of We do

Querying the subgradient oracle on all the entries of every subgradient

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the **sampled** indices to create **stochastic** subgradients.

Updating the noise parameters using subgradients

Instead of We do

Querying the subgradient oracle on all the entries of every subgradient

- Perform ℓ_1 -multi-sampling on the subgradients.
- Query the subgradient oracle on the **sampled** indices to create **stochastic** subgradients.

Updating the noise parameters using subgradients

Update the noise parameters using **stochastic** subgradients.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm **Input:** Target accuracy $\epsilon > 0$, failure probability $\delta \in (0,1)$, param 1: Set $T = \left[\frac{1}{\epsilon^2} \max\left\{4F \log\left(\frac{m}{\delta}\right), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1 G_{\infty} - G_2^2}{\epsilon}\right)\right\}\right]$ and $\eta^{(t)}$ 2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily; 3: for $t = 0$ to $T - 1$ do

Sample s pairs $S^{(t)} = ((i_1, j_1), \ldots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$ $4:$ by measuring s copies of the quantum state $\sum_{i=1}^{m} \sum_{j=1}^{d} \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact 1), where

$$
p^{(t)}(i,j) = \frac{\left| \left(\nabla_u f_i(x^{(t)}, u_i^{(t)}) \right)_j \right|}{\sum_{k=1}^m \left\| \nabla_u f_k(x^{(t)}, u_k^{(t)}) \right\|_1}
$$

- Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \|\nabla_u f_k(x^{(t)}, u_k^{(t)})\|_1$ with relative error 1/4 (Fact 2); $5:$ Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
- 6:

$$
(g_i^{(t)})_j = \frac{|\{(k,\ell) \in S^{(t)} : k = i, \ell = j\}|}{s} \frac{\text{sign}\left[(\nabla_u f)^2 \right]}{\Gamma}
$$

 $\textbf{for } i \text{ in } S^{(t)} \textbf{ do} \ u_i'^{(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)}; \ u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i'^{(t+1)});$ $7:$ 8: 9:

end for $10:$

$$
11: \qquad x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \ldots, u_m^{(t+1)})
$$

- if oracle declares infeasibility then return INFEASIBLE; $12:$
- end if $13:$

14: end for

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}$;

$$
\text{letters } D, G_1, G_2, G_{\infty}, F; \\
= \frac{4D}{3\sqrt{t+1}} \big(G_2^2 + \frac{G_1 G_{\infty} - G_2^2}{s} \big)^{-1/2};
$$

 $\frac{\iota f_i(x^{(t)},u_i^{(t)}))_j]}{\neg(t)-1};$

 \triangleright Update noise memory

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0,1)$, parameters $D, G_1, G_2, G_{\infty}, F$;\n1: Set $T = \left[\frac{1}{\epsilon^2} \max\{4F \log(\frac{m}{\delta}) , \frac{225D^2}{16}(G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}\right]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}}(G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;\n2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;\n3: for $t = 0$ to $T - 1$ do\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), \ldots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$ by measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact [1), where $p^{(t)}(i,j) = \frac{\left|\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|_1}$;\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|_1$ with relative error $1/4$ (Fact [2]);\n6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as $(g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}\right|}{s}$ $\frac{\text{sign}[(\nabla_u f_i(x^{(t)}, u_i^{(t)}))_j]}{(\Gamma^{(t)})^{-1}}$;

 $\begin{array}{c} \textbf{for} \ i \ \text{in} \ S^{(t)} \ \mathbf{do} \\ u_i'^{(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)}; \\ u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i'^{(t+1)}); \end{array}$ 7:
8:
9:

end for $10:$

11:
$$
x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \ldots, u_m^{(t+1)})
$$

- if oracle declares infeasibility then return INFEASIBLE; $12:$
- end if 13:

14: end for

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}$;

 \vartriangleright Update noise memory

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;\n1: Set $T = \left[\frac{1}{\epsilon^2} \max\{4F \log(\frac{m}{\delta}) , \frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}\right]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;\n2: Initialize $(u_1^{(0)}, \ldots, u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;\n3: for $t = 0$ to $T - 1$ do\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), \ldots, (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$ by measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle |j\rangle$ (Fact [l], where $p^{(t)}(i,j) = \frac{\left|\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right|\right|}$;\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|_1$ with relative error $1/4$ (Fact [2];\n6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as\n
$$
(g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}\right| \operatorname{sign}\left[\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)\right]}{s}
$$

 $\begin{array}{c} \textbf{for} \ i \ \text{in} \ S^{(t)} \ \mathbf{do} \\ u_i'^{(t+1)} \leftarrow u_i^{(t)} + \eta^{(t)} g_i^{(t)}; \\ u_i^{(t+1)} \leftarrow \mathcal{P}_{\mathcal{U}}(u_i'^{(t+1)}); \end{array}$ $7:$ 8: 9:

end for $10:$

11:
$$
x^{(t+1)} \leftarrow \mathcal{O}_{\epsilon}(u_1^{(t+1)}, \ldots, u_m^{(t+1)})
$$

- if oracle declares infeasibility then return INFEASIBLE; $12:$
- end if 13:

14: end for

Output: $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^{(t)}$;

 \triangleright Update noise memory

Quantum multi-sampling: samples s numbers from $[n]$ in $O(\sqrt{sm}\log$ time.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}, \frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}\right]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: for $t = 0$ to $T - 1$ do
\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle|j\rangle$ (Fact I), where
\n $p^{(t)}(i,j) = \frac{\left|\left(\nabla_{u} f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right|\right|}$;
\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|_1$ with relative error $1/4$ (Fact 2);
\n6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
\n
$$
(g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}\right| \operatorname{sign}\left[\left(\nabla_{u} f_i(x^{(t)},
$$

Quantum multi-sampling: samples s numbers from $[n]$ in $\overline{\mathbf{1}}$ \boxed{O} \sqrt{sm} \log time.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}$, $\frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}\right]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: for $t = 0$ to $T - 1$ do
\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i\rangle|j\rangle$ (Fact [1), where
\n $p^{(t)}(i,j) = \frac{\left|\left(\nabla_{u} f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|_1}\right|}$;
\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|_1$ with relative error $1/4$ (Fact [2);
\n6: Query the oracle \mathcal{O}_{∇} with inputs $(i, j) \in S^{(t)}$, $x^{(t)}$, and $u_i^{(t)}$, to prepare $g_i^{(t)} \in \mathbb{R}^d$ as
\n
$$
(g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)} : k = i, \ell = j\}\right| \operatorname{sign}\left[\left(\nabla
$$

**Quantum multi-sampling:
\nsamples s numbers from [n] in**
\n
$$
O\left(\sqrt{sm} \log\left(\frac{1}{\delta}\right)\right)
$$
time.

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}$, $\frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}$]\nand $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: **for** $t = 0$ to $T - 1$ do
\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^{m} \sum_{j=1}^{d} \sqrt{p^{(t)}(i,j)} |i \rangle |j \rangle$ (Fact 1), where
\n $p^{(t)}(i,j) = \frac{\left|\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)_j\right|}{\sum_{k=1}^{m} \left|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right|}\right|$;
\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error 1/4 (Fact 2);
\n6: Queue an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error 1/4 (Fact 2);
\n6: $u_k^{(t+1)} \leftarrow u_k^{(t)} + \eta^{(t)} g_k^{(t)}$;
\n $(g_i^{(t)})_j = \frac{\left|\{(k, \ell) \in S^{(t)}$

Quantum multi-sampling: samples s numbers from [n] in time. $O(\sqrt{sm \log n})$ 1 *δ*))

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}$, $\frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}$]\nand $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: **for** $t = 0$ to $T - 1$ do
\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^{m} \sum_{j=1}^{d} \sqrt{p^{(t)}(i,j)} |i \rangle |j \rangle$ (Fact 1), where
\n $p^{(t)}(i,j) = \frac{\left|\left(\nabla_u f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^{m} \left|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right|\right|}$;
\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error $1/4$ (Fact 2);
\n6: Queue an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^{m} \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error $1/4$ (Fact 2);
\n6: $\frac{1}{2} \left\|\nabla_u f_k(x^{(t)}, u_k^{(t)})\right\|$;
\n7: **for** $i_{\text{min}} \leq$

**Quantum multi-sampling:
\nsamples s numbers from [n] in**
\n
$$
O\left(\sqrt{\textit{sm}}\log\left(\frac{1}{\delta}\right)\right)
$$
time.

Stochastic gradient satisfies

$$
\mathbb{E}\left[g_i^{(t)}\right] = \lambda \nabla_u f_i\left(x^{(t)}, u_i^{(t)}\right)
$$

$$
\mathbb{E}\left[\left\|g_i^{(t)}\right\|_2^2\right] \leq \tilde{G}_2^2
$$

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}$, $\frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}$]\nand $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: **for** $t = 0$ to $T - 1$ do
\n1. Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i, j)} |i\rangle |j\rangle$ (Fact 1), where
\n $p^{(t)}(i, j) = \frac{\left|\left(\nabla_{u} f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right|\right|}$,
\n5: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error $1/4$ (Fact 2);
\n6: **Compute an estimate** $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|$,
\n7: **Compute an estimate** $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|$

**Quantum multi-sampling:
\nsamples s numbers from [n] in**
\n
$$
O\left(\sqrt{sm} \log\left(\frac{1}{\delta}\right)\right)
$$
time.

Stochastic gradient satisfies

$$
\mathbb{E}\left[g_i^{(t)}\right] = \lambda \nabla_u f_i\left(x^{(t)}, u_i^{(t)}\right)
$$

$$
\mathbb{E}\left[\left\|g_i^{(t)}\right\|_2^2\right] \leq \tilde{G}_2^2
$$

Quantum multi-sampling:
\n**samples** *s* **numbers from**
$$
[n]
$$
 in
\n
$$
O\left(\sqrt{sm} \log\left(\frac{1}{\delta}\right)\right)
$$
 time.

Stochastic gradient satis fies

$$
\mathbb{E}\left[g_i^{(t)}\right] = \lambda \nabla_u f_i\left(x^{(t)}, u_i^{(t)}\right)
$$

$$
\mathbb{E}\left[\left\|g_i^{(t)}\right\|_2^2\right] \leq \tilde{G}_2^2
$$

Algorithm 3 Quantum online sampling-based dual subgradient robust optimization algorithm
\nInput: Target accuracy
$$
\epsilon > 0
$$
, failure probability $\delta \in (0, 1)$, parameters $D, G_1, G_2, G_{\infty}, F$;
\n1: Set $T = \left[\frac{1}{\epsilon^2} \max \{4F \log(\frac{m}{\delta})\}, \frac{225D^2}{16} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})\}\right]$ and $\eta^{(t)} = \frac{4D}{3\sqrt{t+1}} (G_2^2 + \frac{G_1G_{\infty} - G_2^2}{s})^{-1/2}$;
\n2: Initialize $(u_1^{(0)}, ..., u_m^{(0)}) \in \mathcal{U}^m$ and $x^{(0)} \in \mathcal{D}$ arbitrarily;
\n3: **for** $t = 0$ to $T - 1$ **do**
\n4: Sample *s* pairs $S^{(t)} = ((i_1, j_1), ..., (i_s, j_s)) \in ([m] \times [d])^s$ with probability at least $1 - \delta/T$
\nby measuring *s* copies of the quantum state $\sum_{i=1}^m \sum_{j=1}^d \sqrt{p^{(t)}(i,j)} |i \rangle |j \rangle$ (Fact II), where
\n $p^{(t)}(i,j) = \frac{\left|\left(\nabla_{u} f_i(x^{(t)}, u_i^{(t)})\right)\right|}{\sum_{k=1}^m \left|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right|\right|}$, with relative error $1/4$ (Fact 2);
\n6: Compute an estimate $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error $1/4$ (Fact 2);
\n6: **Compute an estimate** $\Gamma^{(t)} \in \mathbb{R}$ of $\sum_{k=1}^m \left\|\nabla_{u} f_k(x^{(t)}, u_k^{(t)})\right\|$, with relative error $1/4$ (Fact 2);
\n6: **for** i in $S^{(t)}$ **do**
\n

Summary of results

When
$$
T = \left[\frac{1}{\epsilon^2} \max\left\{4F\left(\frac{m}{\delta}\right), \frac{9}{4}(1+4\nu)^2 D^2 \widetilde{G}_2^2\right\}\right]
$$
 and $\eta^{(t)} = \frac{1}{(1-\nu)^2}$

$$
\frac{D}{(1-\nu)\widetilde{G}_2\sqrt{t+1}}
$$

$$
\text{When } T = \left[\frac{1}{\epsilon^2} \max \left\{ 4F \log \left(\frac{m}{\delta} \right), \frac{225D^2}{16} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{s} \right) \right\} \right] \text{ and } \eta^{(t)} = \frac{4D}{3\sqrt{t+1}} \left(G_2^2 + \frac{G_1 G_\infty - G_2^2}{s} \right)^{-1/2}
$$

Algorithm	Calls to	Calls to	Calls to
O_{∇}	O_{\varnothing}	O_{ε}	
Our work	$\frac{\sqrt{G_1 G_{\infty}} G_2 \sqrt{m d D^2}}{\varepsilon^2} \log \left(\frac{D G_2}{\varepsilon \delta}\right)$	$\min\{G_1 G_{\infty}, G_2^2 m\} \frac{D^2}{\varepsilon^2}$	$\frac{G_2^2 D^2}{\varepsilon^2}$

2*D*² *ϵ*2

\n- \n
$$
D \geq \max_{u,v \in \mathcal{U}} \|u - v\|_2
$$
\n
\n- \n
$$
F \geq \max_{x \in \mathcal{D}, u \in \mathcal{U}} |f_i(x, u)|
$$
\n
\n- \n
$$
G_2 \geq \max_{\substack{x \in \mathcal{D}, u \in \mathcal{U}}}{\|\nabla_u f_i(x, u)\|_2}
$$
\n
\n- \n
$$
G_1 \geq \sum_{k=1}^m \|\nabla_u f_k(x, u_k)\|_1
$$
\n
\n- \n
$$
G_{\infty} \geq \max_{k \in [m]} \|\nabla_u f_k(x, u_k)\|_1
$$
\n
\n- \n
$$
\forall x \in \mathcal{D}, \forall u_1, \ldots, u_m \in \mathcal{U}
$$
\n
\n

Robust linear programs

∃? *x* ∈ s.t. $(a_i + P_i u_i)$ ⊤ $x - b_i \leq 0, \qquad \forall u_i \in \mathcal{U}, \quad i \in [m],$

$$
\mathcal{U} = \{u \in \mathbb{R}^d : ||u||_2 \le 1\}
$$

$$
\mathcal{D} \subseteq \{x \in \mathbb{R}^n : ||x||_1 \le 1\}
$$

Robust linear programs

∃? *x* ∈ s.t. $(a_i + P_i u_i)$ ⊤ $x - b_i \leq 0, \qquad \forall u_i \in \mathcal{U}, \quad i \in [m],$

$$
\mathcal{U} = \{u \in \mathbb{R}^d : ||u||_2 \le 1\}
$$

$$
\mathcal{D} \subseteq \{x \in \mathbb{R}^n : ||x||_1 \le 1\}
$$

-
-
-
-
-
-
- - -

• n assets, m markets,

-
-
-
-
-
-
- - -

• *n* assets, *m* markets,

• Portfolio vector: $x \in \mathbb{R}_{>0}^n$ such that $\sum x_i = 1$. *n* ≥0

$$
\det \sum_{i=1}^n x_i = 1.
$$

• *n* assets, *m* markets,

•
• Portfolio vector: $x \in \mathbb{R}_{>0}^n$ such that $\sum x_i = 1$. *n* ≥0

• Expected return of assets in market *i*: $r_i \in \mathbb{R}^n$, $\forall i \in [m]$.

$$
\det \sum_{i=1}^n x_i = 1.
$$

• *n* assets, *m* markets,

•
• Portfolio vector: $x \in \mathbb{R}_{>0}^n$ such that $\sum x_i = 1$. *n* ≥0

• Expected return of assets in market *i*: $r_i \in \mathbb{R}^n$, $\forall i \in [m]$.

$$
\det \sum_{i=1}^n x_i = 1.
$$

Find a portfolio that maximizes the return (without considering the variance)

Robust semidefinite programs

$u_{ij}P_j \cdot X - b_i \leq 0$, $\forall u_i \in \mathcal{U}, i \in [m],$

 \subseteq {*X* \in \mathbb{S}_n^+ $\frac{1}{n}$: $\|X\|_{F} \leq 1$ $= \{u \in \mathbb{R}^d : ||u||_2 \leq 1\}$

Robust semidefinite programs

$u_{ij}P_j \cdot X - b_i \leq 0$, $\forall u_i \in \mathcal{U}, i \in [m],$

 \subseteq {*X* \in \mathbb{S}_n^+ $\frac{1}{n}$: $\|X\|_{F} \leq 1$ $= \{u \in \mathbb{R}^d : ||u||_2 \leq 1\}$

Dictionary

Definitions from Oxford Languages · Learn more

/tras/

noun

1. a framework, typically consisting of rafters, posts, and struts, supporting a roof, bridge, or other structure.

"roof trusses"

Dictionary

Definitions from Oxford Languages · Learn more

/tr^s/

noun

1. a framework, typically consisting of rafters, posts, and struts, supporting a roof, bridge, or other structure.

"roof trusses"

• Find the right geometry, topology and size of a truss structure to withstand external loads.

Dictionary

Definitions from Oxford Languages · Learn more

/tras/

noun

1. a framework, typically consisting of rafters, posts, and struts, supporting a roof, bridge, or other structure.

"roof trusses"

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.

Dictionary

Definitions from Oxford Languages · Learn more

/tras/

noun

1. a framework, typically consisting of rafters, posts, and struts, supporting a roof, bridge, or other structure.

"roof trusses"

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.
- Can be cast as a robust SDP.

Dictionary

Definitions from Oxford Languages · Learn more

/tras/

noun

1. a framework, typically consisting of rafters, posts, and struts, supporting a roof, bridge, or other structure.

"roof trusses"

- Find the right geometry, topology and size of a truss structure to withstand external loads.
- Information on external load is not perfectly known, assumed to belong to an uncertainty set.
- Can be cast as a robust SDP.

Runtime dependent on the Frobenius, ℓ_∞ -norm of the matrices that control the shape of the ellipsoid.

• Quantum meta-algorithm for robust optimization

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications
	- Robust linear programs

- Quantum meta-algorithm for robust optimization
- At most quadratic speedup in terms of the dimension of the noise parameters
- Applications
	- Robust linear programs
	- Robust semidefinite programs

