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Markov chain Monte Carlo method & Metropolis-Hastings algorithm
 Markov chain Monte Carlo method (MCMC)
 sample from the target distribution 𝑃𝑃 by generating a chain of samples 
𝑥𝑥0 → 𝑥𝑥1 → 𝑥𝑥2 → ⋯ s.t. the distribution of 𝑥𝑥𝑖𝑖 converges to 𝑃𝑃

often used for Bayesian inference (e.g. parameter optimization in machine learning)

 Metropolis-Hastings method (MH): a widely-used kind of MCMC
 given the 𝑖𝑖th sample 𝑥𝑥𝑖𝑖, the (𝑖𝑖 + 1)th one 𝑥𝑥𝑖𝑖+1 is chosen as follows

1. randomly draw a candidate �𝑥𝑥𝑖𝑖+1 from the proposal distribution 𝑇𝑇(𝑥𝑥𝑖𝑖,⋅)

2. calculate the acceptance ratio 𝐴𝐴 𝑥𝑥𝑖𝑖 , �𝑥𝑥𝑖𝑖+1 = min 1, 𝑃𝑃 �𝑥𝑥𝑖𝑖+1 𝑇𝑇 �𝑥𝑥𝑖𝑖+1 ,𝑥𝑥𝑖𝑖
𝑃𝑃 𝑥𝑥𝑖𝑖 𝑇𝑇 𝑥𝑥𝑖𝑖 , �𝑥𝑥𝑖𝑖+1

3. set 𝑥𝑥𝑖𝑖+1 = �𝑥𝑥𝑖𝑖+1 with prob. 𝐴𝐴 𝑥𝑥𝑖𝑖, �𝑥𝑥𝑖𝑖+1 , or 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 with prob. 1 − 𝐴𝐴 𝑥𝑥𝑖𝑖, �𝑥𝑥𝑖𝑖+1
 Convergence rate of MCMC
# of iterations for the chain to converge to 𝑃𝑃: �𝑂𝑂 1/Δ ¶

spectral gap Δ = 1 − |𝜆𝜆1|
𝜆𝜆1= (the eigenvalue of the transition matrix 𝑊𝑊 with the 2nd largest modulus)

¶ in terms of total variation distance (Levin & Peres, “Markov chains and mixing times” (2017))



Quantum algorithm for MCMC
 Quantum simulated annealing (QSA)†

 generates 𝑃𝑃-encoding state 𝑃𝑃 ≔ ∑𝑥𝑥 𝑃𝑃(𝑥𝑥)|𝑥𝑥⟩ querying the quantum walk operator 𝑈𝑈
�𝑂𝑂(1/ Δ) time
→ quadratic speedup compared to classical MCMC �𝑂𝑂 1/Δ

 For MH, a concrete implementation of 𝑈𝑈 is given¶

acts on a system of 2 registers 𝑅𝑅𝑆𝑆 ,𝑅𝑅𝑀𝑀 and 1 qubit 𝑅𝑅𝐶𝐶
𝑈𝑈 = 𝑅𝑅𝑉𝑉†𝐵𝐵†𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 𝑉𝑉 𝑥𝑥 𝑅𝑅𝑆𝑆 0 𝑅𝑅𝑀𝑀 = 𝑥𝑥 𝑅𝑅𝑆𝑆 ∑Δ𝑥𝑥 𝑇𝑇(𝑥𝑥, 𝑥𝑥 + Δ𝑥𝑥) Δ𝑥𝑥 𝑅𝑅𝑀𝑀 (Δ𝑥𝑥: possible move)

𝐵𝐵 𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 𝜙𝜙 𝑅𝑅𝐶𝐶 = 𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 ⊗
1− 𝐴𝐴(𝑥𝑥, 𝑥𝑥 + Δ𝑥𝑥) − 𝐴𝐴(𝑥𝑥, 𝑥𝑥 + Δ𝑥𝑥)
𝐴𝐴(𝑥𝑥, 𝑥𝑥 + Δ𝑥𝑥) 1− 𝐴𝐴(𝑥𝑥, 𝑥𝑥 + Δ𝑥𝑥)

𝜙𝜙 𝑅𝑅𝐶𝐶

𝐹𝐹 𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 0 𝑅𝑅𝐶𝐶 = 𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 0 𝑅𝑅𝐶𝐶 ,𝐹𝐹 𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 1 𝑅𝑅𝐶𝐶 = 𝑥𝑥+ Δ𝑥𝑥 𝑅𝑅𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 1 𝑅𝑅𝐶𝐶
𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 0 𝑅𝑅𝐶𝐶 = Δ𝑥𝑥 𝑅𝑅𝑀𝑀 0 𝑅𝑅𝐶𝐶,𝑆𝑆 Δ𝑥𝑥 𝑅𝑅𝑀𝑀 1 𝑅𝑅𝐶𝐶 = −Δ𝑥𝑥 𝑅𝑅𝑀𝑀 1 𝑅𝑅𝐶𝐶

𝑅𝑅 = 𝐼𝐼𝑅𝑅𝑆𝑆 ⊗ 2 0 ⟨0|𝑅𝑅𝑀𝑀 ⊗ 0 0 𝑅𝑅𝐶𝐶 − 𝐼𝐼𝑅𝑅𝑀𝑀 ⊗ 𝐼𝐼𝑅𝑅𝐶𝐶
† Harrow & Wei, SODA 2020   ¶ Lemieux et al., Quantum 4, 287 (2020)



Issue: target distribution calculated via summation of many terms
 e.g., optimization of the parameter 𝑥𝑥 in a statistical model with a large data set 𝒟𝒟

in the Bayesian approach
we want to optimize the posterior distribution of 𝑥𝑥:

𝑃𝑃 𝑥𝑥 𝒟𝒟 ∝ 𝑃𝑃0(𝑥𝑥)𝑃𝑃 𝒟𝒟 𝑥𝑥 (𝑃𝑃0(𝑥𝑥): prior distribution)
likelihood  𝑃𝑃 𝒟𝒟 𝑥𝑥 = exp(𝐿𝐿𝒟𝒟(𝑥𝑥))

log-likelihood  𝐿𝐿𝒟𝒟 𝑥𝑥 = 1
𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖(𝑥𝑥) ,𝑀𝑀 ≫ 1

ℓ𝑖𝑖(𝑥𝑥): contribution from the 𝑖𝑖th data point in 𝒟𝒟

 Can we run MH with speeding up the summation by a quantum algorithm?

sum of many terms



Our idea: speed up the summation by QMCI
 We use quantum Monte Carlo integration (QMCI)† for 𝐿𝐿𝒟𝒟 𝑥𝑥 = 1

𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖(𝑥𝑥),

and incorporate it into QSA

 QMCI
a quantum algorithm to calculate an expectation of a random variable

(and a sum as a special case)

 calculate 𝐿𝐿𝒟𝒟 𝑥𝑥 = 1
𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖(𝑥𝑥) querying the oracle 𝑂𝑂ℓ to compute ℓ𝑖𝑖

𝑂𝑂ℓ 𝑥𝑥 𝑖𝑖 0 = 𝑂𝑂ℓ 𝑥𝑥 𝑖𝑖 ℓ𝑖𝑖(𝑥𝑥)
 for accuracy 𝜖𝜖, the query number is �𝑂𝑂(𝜎𝜎/𝜖𝜖)
𝜎𝜎2: the variance of the terms ℓ𝑖𝑖
𝜎𝜎2 ≔ max

𝑥𝑥
1
𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖2 𝑥𝑥 − 1

𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖 𝑥𝑥

2

quadratic speedup compared to classical Monte Carlo integration: �𝑂𝑂(𝜎𝜎2/𝜖𝜖2)
† Montanaro, Proc. R. Soc. A, 471(2181):20150301 (2015)



Drawback of using QMCI
 QMCI outputs 𝐿𝐿𝒟𝒟 with an error

→ error in the acceptance ratio 𝐴𝐴
→ the chain converges to the distribution 𝑃𝑃′ different from the target 𝑃𝑃
 If we use 𝐴𝐴′ s.t. max

𝑥𝑥,𝑦𝑦
𝐴𝐴 𝑥𝑥 ,𝑦𝑦 − 𝐴𝐴′ 𝑥𝑥, 𝑦𝑦 ≤ 𝜖𝜖,

𝑃𝑃 − 𝑃𝑃′ 𝑇𝑇𝑇𝑇 = �𝑂𝑂(𝜖𝜖/Δ) ¶

(TV: total variation distance)

 For 𝑃𝑃′ − 𝑃𝑃 TV ≤ 𝜖𝜖, it is sufficient that the error in 𝐿𝐿𝒟𝒟 is �𝑂𝑂 𝜖𝜖Δ

query complexity in QMCI: �𝑂𝑂 𝜎𝜎/𝜖𝜖Δ

¶ Alquier et al., Statistics and Computing 26, 29 (2016) 



Result 1: Generating 𝑃𝑃 by QSA with 𝐿𝐿𝒟𝒟 calculated by QMCI 
 Theorem (informal)
 Suppose that we are given the oracle 𝑂𝑂ℓ to compute ℓ𝑖𝑖.

There is a quantum algorithm that outputs an 𝜖𝜖-approximation of 𝑃𝑃 ≔ ∑𝑥𝑥 𝑃𝑃(𝑥𝑥)|𝑥𝑥⟩,
making �𝑂𝑂 𝜎𝜎/𝜖𝜖Δ3/2 queries to 𝑂𝑂ℓ.

 In the exact QSA, in which 𝐿𝐿𝒟𝒟 = 1
𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖(𝑥𝑥) is calculated as the definition (by 𝑀𝑀-time 

iterations of calculating ℓ𝑖𝑖(𝑥𝑥) and adding it), the query number is �𝑂𝑂 𝑀𝑀/Δ1/2

→ QMCI improves the scaling on 𝑀𝑀, the number of terms, in compensation for 𝜖𝜖,Δ



Estimation of the credible interval
 QSA outputs 𝑃𝑃 , but we want not a quantum state but some statistics on 𝑃𝑃 as classical data

 Typical quantity of interest: credible interval (CI) of a parameter in a statistical model
100 1− 𝛼𝛼 % CI for 𝑥𝑥: 

[𝑥𝑥lb, 𝑥𝑥ub] s.t. 𝑃𝑃 𝑥𝑥 < 𝑥𝑥lb = 𝛼𝛼
2

,𝑃𝑃 𝑥𝑥ub < 𝑥𝑥 = 𝛼𝛼
2

 Given the oracle to generate 𝑃𝑃 by QSA, we can estimate 𝑥𝑥lb, 𝑥𝑥ub as follows
We can calculate the cumulative distribution function (CDF) Φ 𝑎𝑎 ≔ 𝑃𝑃 𝑥𝑥 < 𝑎𝑎 as
Φ 𝑎𝑎 = 𝐸𝐸𝑃𝑃 𝟏𝟏𝑥𝑥<𝑎𝑎 = ∑𝑥𝑥𝟏𝟏𝑥𝑥<𝑎𝑎𝑃𝑃(𝑥𝑥), the expectation of the indicator function 𝟏𝟏𝑥𝑥<𝑎𝑎 in 𝑃𝑃,
by QMCI

Calculating Φ 𝑎𝑎 like this, we find 𝑥𝑥lb, 𝑥𝑥ub by bisection (or other root-finding methods)

prob.
density

𝑥𝑥

1 − 𝛼𝛼
𝛼𝛼
2

prob. 𝛼𝛼
2

𝑥𝑥lb 𝑥𝑥ub



Result 2: CI estimation by QSA with QMCI 
 Theorem (informal)
 Suppose that we are given the oracle 𝑂𝑂ℓ to compute ℓ𝑖𝑖.

There is a quantum algorithm that outputs estimates on 𝑥𝑥lb,𝑥𝑥ub with accuracy 𝜖𝜖
(in terms of the CDF), making �𝑂𝑂 𝜎𝜎/𝜖𝜖2Δ3/2 queries to 𝑂𝑂ℓ.

 Based on the exact QSA, the query number is �𝑂𝑂 𝑀𝑀/𝜖𝜖Δ1/2

→ QMCI improves the scaling on 𝑀𝑀, the number of terms, in compensation for 𝜖𝜖,Δ



When QSA with QMCI is beneficial: 𝜎𝜎 sublinear w.r.t. 𝑀𝑀
 We defined 𝐿𝐿𝒟𝒟 𝑥𝑥 = 1

𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖 𝑥𝑥

→ Note that the prefactor 1/𝑀𝑀, which does not always exist
e.g., in the model parameter estimation with 𝑀𝑀 independent data points,
𝐿𝐿𝒟𝒟(𝑥𝑥) = ∑𝑖𝑖=0

𝑀𝑀−1 ℓ𝑖𝑖 𝑥𝑥 with ℓ𝑖𝑖 not depending on 𝑀𝑀

 By redefining ℓ𝑖𝑖 𝑥𝑥 → 𝑀𝑀ℓ𝑖𝑖 𝑥𝑥 , we can write 𝐿𝐿𝒟𝒟 in the form 𝐿𝐿𝒟𝒟(𝑥𝑥) = 1
𝑀𝑀
∑𝑖𝑖=0
𝑀𝑀−1 ℓ𝑖𝑖 𝑥𝑥 ,

but this leads to 𝜎𝜎 = 𝑂𝑂(𝑀𝑀), which causes the advantage of QSA with QMCI to disappear

Complexity of generating 𝑃𝑃 : �𝑂𝑂 𝜎𝜎/𝜖𝜖Δ3/2 = �𝑂𝑂 𝑀𝑀/𝜖𝜖Δ3/2

→ compared to the exact QSA ( �𝑂𝑂 𝑀𝑀/Δ1/2 ),
the scaling on 𝑀𝑀 is same and those on 𝜖𝜖,Δ are worse

 QSA with QMCI can be beneficial if 𝝈𝝈 scales on 𝑴𝑴 sublinearly
→ e.g. parameter estimation in a gravitational wave detection experiment



Gravitational wave
 Gravitational wave (GW)
wave of spacetime distortion caused by an extreme astrophysical event such as a 

merger of black holes (BHs)
detected by laser interferometers such as LIGO in US

GW from BH merger
www.ligo.caltech.edu

Laser interferometer
Zuo+., Opt. Lasers Eng. 135, 106187 (2020)

output of the detector
(noise ≫ GW signal)

Morras+, Phys. Dark Universe 35, 100932
(2022) 

Figures are for illustration purposes.



GW parameter estimation by QSA with QMCI
 We estimate GW parameters (e.g. BH’s mass) from the signal in the detector output 𝑠𝑠(𝑡𝑡)
 If we have 𝑠𝑠(𝑡𝑡) as 𝑀𝑀-point time-series data with interval Δ𝑡𝑡, 

𝐿𝐿𝒟𝒟 𝑥𝑥 = 1
𝑀𝑀/2

∑𝑖𝑖=1
𝑀𝑀/2−1 ℓ𝑖𝑖 𝑥𝑥 , ℓ𝑖𝑖 𝑥𝑥 = Re 4�ℎ∗ 𝑓𝑓𝑖𝑖,𝑥𝑥 𝑠̃𝑠 𝑓𝑓𝑖𝑖

𝑆𝑆𝑛𝑛 𝑓𝑓𝑖𝑖 Δt
¶

ℓ𝑖𝑖: contribution from the Fourier mode with frequency 𝑓𝑓𝑖𝑖 = 𝑖𝑖/𝑀𝑀Δ𝑡𝑡
 �ℎ(𝑓𝑓, 𝑥𝑥): Fourier-transformed theoretical waveform of GW depending on parameters 𝑥𝑥
𝑠̃𝑠: Fourier-transf. of 𝑠𝑠, 𝑆𝑆𝑛𝑛: noise power spectrum

 In this case, 𝜎𝜎 = 𝑂𝑂 𝑀𝑀 , so QSA with QMCI can be beneficial

𝜎𝜎 = 𝑂𝑂 𝑀𝑀 is due to the situation that random noise dominates over the GW signal
in the detector output

 QSA with QMCI estimates the CI of a GW parameter with �𝑂𝑂(𝑀𝑀1/2/Δ3/2𝜖𝜖2) queries to 𝑂𝑂ℓ

¶ Some terms omitted. 



Summary
 MCMC, especially MH is a widely used technique, e.g. Bayesian inference including 

parameter optimization in machine learning.
 QSA provides quadratic speedup with respect to spectral gap Δ compared with classical MH.
 We focused on another point, calculation of the log-likelihood 𝐿𝐿𝒟𝒟 as a sum of many terms.

We proposed speeding up the summation by QMCI and incorporated it into QSA.
 We consider not only generating the quantum state 𝑃𝑃 but also extracting a quantity of 

interest, a credible interval.
 We present GW parameter estimation as an example where QSA with QMCI is beneficial.

 Summary of query complexity

Task QSA with QMCI Exact QSA Classical MH
Generating 𝑃𝑃 �𝑂𝑂(𝜎𝜎/Δ3/2𝜖𝜖) �𝑂𝑂(𝑀𝑀/Δ1/2) N/A
CI estimation (general) �𝑂𝑂(𝜎𝜎/Δ3/2𝜖𝜖2) �𝑂𝑂(𝑀𝑀/Δ1/2𝜖𝜖) �𝑂𝑂(𝑀𝑀/Δ𝜖𝜖2)
CI estimation (GW) �𝑂𝑂(𝑀𝑀1/2/Δ3/2𝜖𝜖2) �𝑂𝑂(𝑀𝑀/Δ1/2𝜖𝜖) �𝑂𝑂(𝑀𝑀/Δ𝜖𝜖2)
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