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Background

Given molecular Hamiltonian 𝐻 = σ𝑖𝐻𝑖, find the ground state of 𝐻

Talk on Thursday, we discuss how to solve physical problems using quantum embedding
• Challenges: understanding the problem (interpretation, partition ,ansatz design)

Results: Qubit reduction
What about the circuit depth?

The other aspect: given the Hamiltonian, design quantum algorithms

Minimization problem: min
𝜃
𝐸 Ԧ𝜃 with 𝐸 Ԧ𝜃 = 𝜓 Ԧ𝜃 𝐻 𝜓 Ԧ𝜃 , ൿ|𝜓( റ𝜃) = 𝑈 റ𝜃 ۧ|𝜓ref with VQE
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Background

VQE approaches, in principle, have several drawbacks: 
Limited expressivity: 
• Due to the presence of various noises, the circuit depths are restricted. Thus, their expressiveness is limited.
• Barren plateau1: Once the ansatz is too expressive (i.e., reaches unitary 2-design), the gradients of the 

parameters vanish exponentially.

Challenge of converge and training issue: 
• The training of the VQE algorithm is hard3 in general.
• A super-polynomial number of local minimums is presented near the global minimum in the VQE loss 

landscape, avoiding convergence to the global minimum 2.

Intercorrelated 
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1 McClean et al, Nat. Commun. 9, 4812 (2018). 
2 Anschuetz and Kiani, Nat. Commun. 13, 7760 (2022). 
3 Bittel and Kliesch PhysRevLett.127.120502 (2021).

Can we further enhance the performance of NISQ devices (shallow circuits)?
Benefit from advanced classical approaches 
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𝜓 𝜏 =
𝑒−𝐻𝜏|𝜓(0)ۧ

⟨𝜓(0)|𝑒−2𝐻𝜏|𝜓(0)ۧ

𝜓 0 =

𝑖

𝛼𝑖 𝐸𝑖

𝜓 𝜏 → ∞ = |𝐸0ۧ

Imaginary time evolution
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Challenge: non-unitarity.



Review on Quantum Monte Carlo

Key idea: stochastically propagating the walkers when implementing 𝑒−Δ𝜏𝐻

Key challenge: sign problem causes exponential sample complexity of the walkers

Walkers: states in a chosen (complete orthonormal) basis set.

Z = Tr 𝑒−𝜏𝐻 = ∫ 𝑑𝑁𝑑𝑟 𝑟 𝑒−𝜏𝐻 𝑟

= ∫ 𝑑𝑟0𝑑𝑟1…𝑑𝑟𝑀 𝑟0 𝑒
−𝛿𝜏𝐻 𝑟𝑀 ⋯ 𝑟2 𝑒

−𝛿𝜏𝐻 𝑟1 𝑟1 𝑒
−𝛿𝜏𝐻 𝑟0

Insert complete basis

𝑂 = Tr(𝑒−𝜏𝐻𝑂)/𝑍



Projector QMC
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Path integral Monte Carlo (QMC):
configurational space propagation.

Full Configuration interaction Quantum Monte
Carlo (FCIQMC): Fock space propagation.
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𝐸(𝜏)

𝐸G.S.

𝜏

The sign problem causes great
statistical fluctuation.

r𝑘 𝑒
−𝛿𝜏𝐻𝑗 𝑟𝑘+1 may be negative



Current progress of QC-QMC

Key idea of Huggins et al.’s work

Introduce quantum ansatz

Original wave function vs. Importance sampled wave function

8/24Huggins et al., Nature 603, 416–420 (2022).

ۧ|Ψ 𝜏 =

𝑖

𝜔𝑖(𝜏)
ۧ|𝜙𝑖(𝜏)

𝜓𝑇 𝜙𝑖(𝜏)
ۧ|Ψ 𝜏 =

𝑖

𝜔𝑖(𝜏) ۧ|𝜙𝑖(𝜏) ۧ|Ψ 𝜏 → ∞ = |Ψ0ۧ



Current progress of QC-QMC
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Exponential challenge1 is encountered even in sign-problem-free cases.

𝐸 𝑖 𝜏 =
𝜓𝑇 𝐻 𝜙𝑖(𝜏)

𝜓𝑇 𝜙𝑖(𝜏)
.

The overlap in the denominator could be exponentially small.
the number of samples for estimating the quantity could grow exponentially.

Slater determinant

Mazzola and Carleo, Arxiv 2205.09203 (2022).



Quantum Computing-Full Configuration Interaction QMC (QC-FCIQMC) algorithm.
• Improve both the VQE and classical QMC methods:

➢ Provide systematic improvements over the given VQE-prepared state
➢ A general way for mitigating the sign problem

The walkers are entangled states (opposed to QMC)
➢ Given the VQE-prepared state ൿ|𝜓( റ𝜃) = 𝑈( റ𝜃) ۧ|𝜓ref , the basis is chosen to be { ۧ|𝜙𝑖 = 𝑈 റ𝜃 ۧ|𝑖 , ∀𝑖}, where each ۧ|𝑖 is a

classical product state.

➢ Each state (walker) in the basis is orthonormal since ൻ𝜙𝑖 ൿ|𝜙𝑗 = 𝛿𝑖𝑗 .
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QC-QMC: Overview

Compared to VQE
Increasing depth

Compared to QMC
Small variance



QC-FCIQMC: Implementation
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Key idea: effectively realize the diagonal and off-diagonal terms of the ITE operator in a probabilistic way

𝑒−𝛥𝜏(𝐻−𝐸𝑠) ≈ 𝕝 − 𝛥𝜏 𝐻 − 𝐸𝑠

Given ۧ|𝜙0 = 𝑈 റ𝜃 ۧ|0 ۧ|0 ≡ ۧ|𝜓ref . We may initialize the walker set to be ۧ{|𝜙0 }, and repeat

• Spawn: For each walker ۧ|𝜙𝑖 in the current walker set → walkers ൿ|𝜙𝑗 with probability

𝑝 𝑗|𝑖 = −𝛥𝜏 𝜙𝑗 𝐻|𝜙𝑖 /σ𝑗 −𝛥𝜏 𝜙𝑗 𝐻|𝜙𝑖 , ∀𝑗 ≠ 𝑖 adjusting the sign of the corresponding walker

• Death/Cloning: For each ۧ|𝜙𝑖 in the old generation, if 𝑝 𝑖 = Δ𝜏( 𝜙𝑖 𝐻|𝜙𝑖 − 𝐸𝑠) > 0, then kill the walker with

probability 𝑝 𝑖 ; Otherwise, clone with −𝑝 𝑖

• Annihilation: Sum up the new and old generation of walkers

Red: walkers with+1 sign;
Blue: walkers with −1 sign.
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QC-FCIQMC: Implementation



An example:

Consider the partition function of the thermal state in the form of path integrals,

Each path integral forms a closed path

The sign problem:

• Presents whenever 𝑝(𝑐) contains negative terms. E.g, fermions, negative weights arise from the Pauli 

exclusion principle under particle exchange.

• Basis dependent.
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Sign problem

Troyer and Wiese, PhysRevLett.94.170201 (2005)



For arbitrary observable 𝐴, the standard way for evaluation is to sample w.r.t. the bosonic system with |𝑝(𝑐)| and 

𝑠(𝑐) = sign (𝑝(𝑐)), we have

𝐴 =
σ𝑐 𝐴 𝑐 𝑠 𝑐 |𝑝 𝑐 |/σ𝑐 |𝑝 𝑐 |

σ𝑐 𝑠 𝑐 𝑝 𝑐 /σ𝑐 |𝑝(𝑐)|
=

𝐴 ′

𝑠 ′
,

The average sign decays exponentially with the free energy difference Δ𝑓,

𝑠 =
𝑧

𝑧′
= exp(−𝛽𝑁Δ𝑓)

Thus, the relative error grows exponentially:

Δ𝑠

𝑠
=

𝑠2 − 𝑠 2/𝑀

𝑠
=

1 − 𝑠 2

𝑀 𝑠
~
𝑒𝛽𝑁Δ𝑓

𝑀

𝑀 is the number of samples.

14/24

Origin of the sign problem

𝐸(𝜏)

𝐸G.S.

𝜏

𝑧 = σ𝑐 𝑝(𝑐) , z
′ = σ𝑐 |𝑝(𝑐)|

Fermionic and corresponding bosonic system 



Proof idea: Denote 𝐺 = 𝛼𝐼 − 𝐻 with 𝛼 = max
𝑖

𝐻𝑖𝑖, 

𝑍 = Tr(𝑒−𝛽𝐻) = 𝑒−𝛽𝛼Tr(𝑒𝛽𝐺) (𝐺𝑖𝑗≥ 0)

Thus, stoquastic Hamiltonians are sign-problem-free

Mitigation: The sign problem is basis dependent. A universal approach for suppressing the sign problem is by 

similarity transformation of 𝐻, s.t, to approach stoquastic Hamiltonians 

𝐻 𝑈 = 𝑈†𝐻𝑈

Remark: By expanding the wave function in the VQE-unitary-rotated basis set, our method effectively 

implements the similarity transformation with 𝑈 = 𝑈( Ԧ𝜃) prepared by VQE
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Stoquasticity and mitigation of the sign problem



Remark: The NSI is computationally non-trivial.

16/24

Measure of the sign problem

Relative deviation from the stoquastic Hamiltonians

Bosonic form: stoquastic Hamiltonians
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Measure of the sign problem

Remark:
➢ Mitigate the sign problem needs minimize 𝐻+ an 𝐻− simultaneously.
➢ When 𝐻+ vanishes completely, 𝑆 𝐻 = 0 as expected for stoquastic Hamiltonians.
➢ NSI does not sufficiently guarantee the performance

wanted

Unwanted



1. Expand the NSI into path integral form

2. Define 𝐺+ = 𝛼 − 𝐻+ and 𝐺− = 𝛼 − 𝐻−. The above subtraction is supposed to be −2-fold of sum of all negative path integrals.

all possible negative terms can be enumerated by combination of terms in 𝐺+ and 𝐺−:

1. By property of L1 norm such that 𝐴𝑚 𝐿1 ≤ 𝐴 𝐿1
𝑚 , we can relax each term above by 𝐺−

𝑎
𝐿1 𝐺+

𝑏
𝐿1
≤ 𝐺− 𝐿1

𝑎 𝐺+ 𝐿1
𝑏 .

2. Finally, by the binomial theorem , we arrive at our results.
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Proof sketch

Group by odd and even terms



System: N2 molecule (12 qubits).
Results vs shallow depth VQE
methods.

19/24

Verification by numerics

Systematic improvement of the sign problem
by introducing entangled bases
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Verification by numerics

Results vs classical FCIQMC algorithms.

Distribution of the walkers become more
concentrated to the initial walker | ۧ𝜙0 as it get
closer to the ground state
• fewer walkers



Summary

• Introduce the QC-FCIQMC algorithm that improves the ability of shallow-depth quantum circuits and each

state (walker) could be prepared by shallow depth circuit available by NISQ devices.

• Systematic suppression of the sign problem is achieved if the basis (set of walkers) is refined.

• NSI to characterize severity of the sign problem (not sufficient for performance guarantee)

• Limitation: our method demands a huge number of measurements for sampling the walkers that could be

challenging for NISQ devices.

Possible future works

• The upper bound on NSI can serve as a low-cost loss function for easing the sign problem for classical QMC

• Explore other kinds of unitary construction for mitigating the sign problem, one with performance guarantee

• Performance analysis under certain noise channels

• Compatibility with classical shadows to reduce measurement costs
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Summary & outlook


