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Background

Given molecular Hamiltonian H = );; H;, find the ground state of H

Talk on Thursday, we discuss how to solve physical problems using quantum embedding
e Challenges: understanding the problem (interpretation, partition ,ansatz design)

Results: Qubit reduction
What about the circuit depth?

The other aspect: given the Hamiltonian, design quantum algorithms

Minimization problem: m%nE(é) with E(é) = (w(é)Ile(é)), |1,b(§)) = U(§)|¢ref) with VQE
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Background

VQE approaches, in principle, have several drawbacks:

Limited expressivity:

 Due to the presence of various noises, the circuit depths are restricted. Thus, their expressiveness is limited.

« Barren plateaul: Once the ansatz is too expressive (i.e., reaches unitary 2-design), the gradients of the
parameters vanish exponentially.

Challenge of converge and training issue:

« The training of the VQE algorithm is hard3 in general.

« A super-polynomial number of local minimums is presented near the global minimum in the VQE loss
landscape, avoiding convergence to the global minimum 2,

Intercorrelated

Can we further enhance the performance of NISQ devices (shallow circuits)?
Benefit from advanced classical approaches

1 McClean et al, Nat. Commun. 9, 4812 (2018).
2 Anschuetz and Kiani, Nat. Commun. 13, 7760 (2022).

3 Bittel and Kliesch PhysRevlLett.127.120502 (2021). a/24



Imaginary time evolution
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Challenge: non-unitarity.
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Review on Quantum Monte Carlo

Key idea: stochastically propagating the walkers when implementing e ~27H

Walkers: states in a chosen (complete orthonormal) basis set.

Key challenge: sign problem causes exponential sample complexity of the walkers py
li>

(0) =Tr(e™™0)/Z -
Z=Tr(e ™) = [ d% (rle~™|r) i ¢

= [ drydry ...drM<r0|e_5TH|rM) ---(rz|e‘5TH|r1>(r1|e_5TH|r0) Z/
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Insert complete basis



Projector QMC

Imaginary time

Path integral Monte Carlo (QMC):
configurational space propagation.

(r;.|e "°™i|r,,1) may be negative

E(t)

»

Full Configuration interaction Quantum Monte The sign problem causes great
Carlo (FCIQMC): Fock space propagation. statistical fluctuation.
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Current progress of QC-QMC

Key idea of Huggins et al.’s work
Introduce quantum ansatz

Original wave function VS. Importance sampled wave function
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Huggins et al., Nature 603, 416—420 (2022). 8/24



Current progress of QC-QMC

Exponential challenge! is encountered even in sign-problem-free cases.

C |¢,~) |¢,-> |¢,'> |¢,-> Updating gate parameters
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I } I (Vo)
THrj
. |¢'> ~ Stochastic Xem {W,'}T,{|¢f>}r |0) e Trial ) CAQ ’
evolution _| wave- |
5 = L I#7) 1) function Q2
»e Positive : | :
> X : T ]
+ - :
1 E@) =Y w@)E"(r
0 , L i (Ele) =3 wiE" 0 " o,
-
w -  —— Negative —~L—
|'*H () =z W,'(T)|¢,-(T)> Eliminate w;, < 0 and evolve w,
1 I | |
Classical computer Quantum processor
Slater determinant ED(7) = (YrlH|p; (1))

(Wrlpi(D))

The overlap in the denominator could be exponentially small.
the number of samples for estimating the quantity could grow exponentially.

Mazzola and Carleo, Arxiv 2205.09203 (2022). 9/24



QC-QMC: Overview

Quantum Computing-Full Configuration Interaction QMC (QC-FCIQMC) algorithm.

* Improve both the VQE and classical QMC methods:
» Provide systematic improvements over the given VQE-prepared state
» A general way for mitigating the sign problem

o E T Fclame
E ADAPT-VQE Qc-FciaMe —
Qc-FelaMe — Exact Compared to QMC

Compared to VQE
Increasing depth

Exact

Small variance

Depth

The walkers are entangled states (opposed to QMC)

> Given the VQE-prepared state |1/)(§)) = U(é)h/)ref), the basis is chosen to be {|¢;) = U(§)|i), Vi}, where each |i) is a
classical product state.
» Each state (walker) in the basis is orthonormal since (¢i|¢j) = 0jj -
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QC-FCIQMC: Implementation

Key idea: effectively realize the diagonal and off-diagonal terms of the ITE operator in a probabilistic way
e 4TH=Es) ~ | — At(H — E,)

Given |¢y) = U(5)|0) |0) = |Yrer). We may initialize the walker set to be {|¢)}, and repeat
* Spawn: For each walker |¢;) in the current walker set — walkers |¢j> with probability

p(il) = |-At(¢;|HI¢p:)|/ Z,|—At(p;|H|b:)

probability p(i); Otherwise, clone with —p(i)

Vj # i adjusting the sign of the corresponding walker
» Death/Cloning: For each |¢;) in the old generation, if p(i) = At({¢p;|H|p;) — E) > 0, then kill the walker with

e Annihilation: Sum up the new and old generation of walkers

0th Generation

A
= .
o
g Uliy > = | ¢3)
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QC-FCIQMC: Implementation

Key techniques: For walker |¢;), sample the |¢;)s according to |H;;|*,Vj.
Denote II; = [j)(j|, and let H = ), hyP,. We have

kk’
where pt,.,(j) = Re(i|UT P, UTL; U P Uli).

Hjil? = hichirpigs (7), 8.6 ) phw () < 1,
j

0y — H [ H — 7 0y — H H 7

. " > f P Py 4

i) —U(G)}* P (e jery U @O/ 0) Xap UGN
Figure 1: Circuit samples p},/ (5) Figure 2: Circuit estimates H;.
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Sign problem

An example:
Consider the partition function of the thermal state in the form of path integrals,

Z =Tr (e PH) = i A" (H™)

n=0 n!
-y Z " (| Hlia) s Elli) -~ Ginl i)
n=01%y,-
—Z Z p (i1, ,in) ZZp(c)
n=01,- c

Each path integral forms a closed path

The sign problem:

* Presents whenever p(c) contains negative terms. E.g, fermions, negative weights arise from the Pauli

exclusion principle under particle exchange.
* Basis dependent.

Troyer and Wiese, PhysRevlett.94.170201 (2005)

liy>

lig>

liy>

|iy>
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Origin of the sign problem

For arbitrary observable A4, the standard way for evaluation is to sample w.r.t. the bosonic system with |p(c)| and
s(c) = sign (p(c)), we have
2.cA(c)s()p()l/ Xclp(e)| _ (AY

Yes @lp@l/ Xclp(@l ()

(4) =

The average sign decays exponentially with the free energy difference Af,

(5) = = = exp(—fNA)

Thus, the relative error grows exponentially:
As  J(s2) = (s)2/M J1—(s)? eFNAS E(h
(s) (s) T VM(s) M

M is the number of samples. \\

Fermionic and corresponding bosonic system

z=2:p(),z' =Y. |p()]




Stoquasticity and mitigation of the sign problem

Definition (Stoquastic Hamiltonian®)

“Bravyi et al. 2006.

For any Hamiltonian H, s.t. H;; < 0,Vi # j. These types of Hamiltonian
shall not present sign problem, i.e., all terms in the path integrals are positive.

v

Proof idea: Denote G = al — H with « = max H;;,
l

Z = Tr(e M) = e FaTr(ef%) (G;;=0)
Thus, stoquastic Hamiltonians are sign-problem-free

Mitigation: The sign problem is basis dependent. A universal approach for suppressing the sign problem is by
similarity transformation of H, s.t, to approach stoquastic Hamiltonians

HWU) = UTHU
Remark: By expanding the wave function in the VQE-unitary-rotated basis set, our method effectively

implements the similarity transformation with U = U(6) prepared by VQE
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Measure of the sign problem

Relative deviation from the stoquastic Hamiltonians

Definition (Non-Stoquastic Indicator)

Denoting bosonic form of H as H:

ﬁij ZHZ'J' vi=] 07’7:7&_]' andHij < @
ﬁij — —Hz'j if i # 7 and Hij > 0.
The NSI is defined as

_ Tr[e=PH] — Tr[e=PH]

S G

Remark: The NSI is computationally non-trivial.

Bosonic form: stoquastic Hamiltonians
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Measure of the sign problem

Theorem (Non-Stoquastic Indicator upper bound)

Define
(H_)i; = H;j ififi=j ori# j and H;; <0; wanted
(H+)ij = Hij ’l,f’l 7é _] and Hij > 0.

The NSI is upper-bounded by

Unwanted

S(H) < 2621 )ss sinh(B]|Hy |11,):

Here, |M||L, := >,

i |Mij| is the matriz norm for matriz M.
)

Remark:

» Mitigate the sign problem needs minimize H, an H_ simultaneously.
» When H, vanishes completely, S(H) = 0 as expected for stoquastic Hamiltonians.

» NSI does not sufficiently guarantee the performance
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Proof sketch

1. Expand the NSl into path integral form
S(H) = Tr(e=?7) - Tr(e~PM)
— Tr(e—ﬂ(af—@)) — Tr(e~Blal-0))

(Z > (I{bol G 1) ¢1|G|¢2>---<¢k1|G|¢o>|—<¢o|6‘|¢1><¢1qubz)---(qbk1|G|¢>o>))
k=0 {l9)}

2. DefineG, =a— H, and G_ = a — H_. The above subtraction is supposed to be —2-fold of sum of all negative path integrals.
all possible negative terms can be enumerated by combination of terms in G, and G_:

o (B)2kH1 2k + 1 2k 2k+1 3 2k—2 2k +1 2k+1
o\~ VP
> @iy 16N 1620, + (2 16262, -+ (2 1 )16,

= (B)% [ (2k _ 2k _ 2k _
#23 g ((; )\G_nLluGi‘“ o+ (G GGl 4+ (7 Y166l )

=0

Group by odd and even terms

1. By property of L1 norm such that ||A™[[,, < [|A||}, we can relax each term above by ||G£‘||L1||Gb|| < IIG_||f1||G+|Ifl.
2. Finally, by the binomial theo 5((b+a)" — (b—a)") = Y1, (44 (7)a™b" "%, we arrive at our results.
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Energy(Hartree)

Energy deviation (Hartree)

Verification by numerics
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Verification by numerics

Energy

Walker population

Walker population
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Results vs classical FCIQMC algorithms.

Distribution of the walkers become more

concentrated to the initial walker |¢,) as it get
closer to the ground state
+ fewer walkers
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Summary & outlook

Summary

* Introduce the QC-FCIQMC algorithm that improves the ability of shallow-depth quantum circuits and each
state (walker) could be prepared by shallow depth circuit available by NISQ devices.

e Systematic suppression of the sign problem is achieved if the basis (set of walkers) is refined.

* NSI to characterize severity of the sign problem (not sufficient for performance guarantee)

e Limitation: our method demands a huge number of measurements for sampling the walkers that could be
challenging for NISQ devices.

Possible future works

 The upper bound on NSI can serve as a low-cost loss function for easing the sign problem for classical QMC

* Explore other kinds of unitary construction for mitigating the sign problem, one with performance guarantee
* Performance analysis under certain noise channels

* Compatibility with classical shadows to reduce measurement costs
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