

Trinity College Dublin

The University of Dublin

Performance Analysis and Comparative Study of QAOA Variants

QAOA: Problem-inspired ansatz

- Inspired by Trotterized AQC, QAOA was designed to be a variational algorithm with repeated cost and mixer layers.

QAOA

- Layerized variational form based on trotterization of an adiabatic process.

 $H = sH_c + (1 - s)H_M$ $\left(e^{\alpha H_C}e^{\beta H_M}\right)^n$

QAOA Evaluation

- Guaranteed solution using infinite steps.
- In general* QAOA slightly underperforms compared to classical algorithms

QAOA Variations

Improve Resource Use

- Reduce number of parameters
- Improve initial guess

 \dots

Improve Approximation Ratio

- Specialize ansatz for problem
- Improve optimization strategy

 \dots

Extend to other problems

e.g constrained **Improve Noise Resilience**

Variations landscape

MaxCut problem

- Partition ("cut") a graph in two groups, maximizing the interconnection between them.

- Lots of practical applications.
- Adaptable (changing graph type and connectivity significantly changes the problem).
- NP-Hard.

QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations
- 8 QAOA variants; 1 to 8 layers
- Noise-free (simulations) and noisy (IBM quantum devices)

QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations
- 8 QAOA variants; 1 to 8 layers
- Noise-free (simulations) and noisy (IBM quantum devices)

Problem type vs approximation ratio

- The problem type (graph connectivity) significantly influences the approximation ratio.
- Both on simulation and on real quantum hardware, all variants demonstrate superior results when applied to complete and regular graphs, rather than random graphs.

Problem size vs resource usage

- Unique trade-offs between approximation capabilities and amount of computational resources.
- Some variants achieve higher approximation ratios but require more gates, have higher circuit depth, or need more circuit evaluations, resulting in increased computation time.

Problem size vs approximation ratio

- Declining trend of mean approximation ratios with increasing graph size.
- A strong dependence on graph type is again evident.

Proximity of optimal parameters to initial random guess

Our key takeaways

- There is no one "QAOA"; variants show significantly different characteristics.
- QAOA performance is very problem-dependent: ansatz-problem dependency investigation is very high priority.
- To understand QAOA better:
	- apply to diverse set of problems and track efficiency and performance;
	- investigate parameter space characteristics.

Team* (Lots of Zoom meetings)

Work in progress

A Review on Quantum Approximate Optimization Algorithm and its Variants

Kostas Blekos^{*1}, Dean Brand², Andrea Ceschini³, Chiao-Hui Chou⁴, Rui-Hao Li⁵, Komal Pandya⁶, and Alessandro Summer⁷

Work in progress to extend the framework:

- Release as Open Source
- **Public database** of results; user updatable
- Include *many* more problems (maxcut graphs)
- Include other models (TSP, SK, ...)