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QAOA: Problem-inspired ansatz

- Inspired by Trotterized AQC, QAOA was designed to be a variational algorithm with repeated cost
and mixer layers.

Variational parameters
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QAOA

- Layerized variational form based on trotterization of an adiabatic process.
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QAOA Evaluation

- Guaranteed solution using infinite steps.

- In general™ QAOA slightly underperforms compared to classical algorithms

5% < 88%



QAOA Variations

/Improve Resource Use
e Reduce number of
parameters
e Improve initial guess

k.

-

Improve Approximation Ratio

-

Extend to other problems
e.g constrained

-

\

e Specialize ansatz for problem

~

e Improve optimization strategy

)

-

Improve Noise Resilience
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Variations landscape

Constraint
Variant MA- QAOA QAOA+ DC-QAOA ab-QAOA  ADAPT-QAOQA RQAOA QAOAnsatz ~ GM-QAOA Th-QAOA Preserving WS-QUA FALQON FOAQOA
Mixers
Efficiency £/+ /% £/+ +/+ /% /% -/ + £/ + /% £/+ +/+ -/ + /%
Solution
) + + + + + + + + + * + * +
Quality
Complexity = t = t = - = + * + + + -
Constraints
+ + + + + + + + + + + + +
Handling
Noise
+ + + + + + + + + + + + +

Resilience



MaxCut problem

- Partition (“cut”) a graph in two groups, maximizing the interconnection between them.

- Lots of practical applications.
- Adaptable (changing graph type and connectivity significantly changes the problem).
- NP-Hard.



QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations

- 8 QAOA variants; 1 to 8 layers

- Noise-free (simulations) and noisy (IBM quantum devices)
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QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations
- 8 QAOA variants; 1 to 8 layers

- Noise-free (simulations) and noisy (IBM quantum devices)

Node Sizes
Problem Type  Variations per Node Size Layers (1-8) Total Variations
(Even 4-24)
Complete Graphs 1 11 8 88
3-Regular Graphs 8 11 8 704

Random Graphs 8 11 8 704



Problem type vs approximation ratio

- The problem type (graph connectivity) significantly influences the approximation ratio.

- Both on simulation and on real quantum hardware, all variants demonstrate superior results
when applied to complete and regular graphs, rather than random graphs.
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Problem size vs resource usage

- Unique trade-offs between approximation capabilities and amount of computational resources.

- Some variants achieve higher approximation ratios but require more gates, have higher circuit
depth, or need more circuit evaluations, resulting in increased computation time.
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Problem size vs approximation ratio

- Declining trend of mean approximation ratios with increasing graph size.

- A strong dependence on graph type is again evident.

Approximation ratio

Approximation ratio
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Proximity of optimal parameters to initial random guess
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Our key takeaways

- Thereis no one “QAOA”; variants show significantly different characteristics.

QAOA performance is very problem-dependent: ansatz-problem dependency investigation
IS very high priority.

- To understand QAOA better:

- apply to diverse set of problems and track efficiency and performance;
- investigate parameter space characteristics.
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(Lots of Zoom meetings)

* Quantum Open Source Foundation mentorship program (March 2022)



Work in progress

A Review on Quantum Approximate Optimization Algorithm

Work in progress to extend the
framework:

and its Variants

Kostas Blekos*!, Dean Brand?, Andrea Ceschini®, Chiao-Hui Chou?, Rui-Hao Li®, Komal Pandya®, and

Alessandro Summer’

« Release as Open Source

. Public database of results; user
updatable

« Include many more problems (max-
cut graphs)

. Include other models (TSP, SK, ...)




