

Trinity College Dublin

The University of Dublin

Performance Analysis and Comparative Study of QAOA Variants

Kostas Blekos Dean Brand Andrea Ceschini Chiao-Hui Chou	Rui-Hao Li Komal Pandya Alessandro Summer	QTML 2023	19-24/11/2023 CERN

QAOA: Problem-inspired ansatz

- Inspired by Trotterized AQC, QAOA was designed to be a variational algorithm with repeated cost and mixer layers.

QAOA

- Layerized variational form based on trotterization of an adiabatic process.

 $H = sH_c + (1-s)H_M$ $\left(e^{\alpha H_C}e^{\beta H_M}\right)^n$

QAOA Evaluation

- Guaranteed solution using infinite steps.
- In general* QAOA slightly underperforms compared to classical algorithms

QAOA Variations

Improve Resource Use

- Reduce number of parameters
- Improve initial guess

• ...

Improve Approximation Ratio

- Specialize ansatz for problem
- Improve optimization strategy

• ...

Extend to other problems

e.g constrained

Improve Noise Resilience

Variations landscape

Variant	MA- QAOA	QAOA+	DC-QAOA	ab-QAOA	ADAPT-QAOA	RQAOA	QAOAnsatz	GM-QAOA	Th-QAOA	Constraint Preserving Mixers	WS-QUA	FALQON	FQAOA
Efficiency	±/+	±/±	±/+	±/+	±/±	±/±	- / +	±/+	±/±	±/+	+/±	- / +	± / ±
Solution Quality	+	+	±	+	+	+	+	+	+	±	+	±	+
Complexity	-	±	-	±	-	-	-	±	±	±	±	+	-
Constraints Handling	±	±	±	±	±	±	+	+	±	+	±	±	+
Noise Resilience	±	±	+	±	±	±	±	+	±	±	±	±	±

MaxCut problem

- Partition ("cut") a graph in two groups, maximizing the interconnection between them.

- Lots of practical applications.
- Adaptable (changing graph type and connectivity significantly changes the problem).
- NP-Hard.

QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations
- 8 QAOA variants; 1 to 8 layers
- Noise-free (simulations) and noisy (IBM quantum devices)

QAOA variants evaluation and comparison

- Complete, 3-regular and random graphs; 4 to 24 nodes; 8 variations
- 8 QAOA variants; 1 to 8 layers
- Noise-free (simulations) and noisy (IBM quantum devices)

Problem Type	Variations per Node Size	Node Sizes (Even 4-24)	Layers (1-8)	Total Variations
Complete Graphs	1	11	8	88
3-Regular Graphs	8	11	8	704
Random Graphs	8	11	8	704

Problem type vs approximation ratio

- The problem type (graph connectivity) significantly influences the approximation ratio.
- Both on simulation and on real quantum hardware, all variants demonstrate superior results when applied to complete and regular graphs, rather than random graphs.

Problem size vs resource usage

- Unique trade-offs between approximation capabilities and amount of computational resources.
- Some variants achieve higher approximation ratios but require more gates, have higher circuit depth, or need more circuit evaluations, resulting in increased computation time.

Problem size vs approximation ratio

- Declining trend of mean approximation ratios with increasing graph size.
- A strong dependence on graph type is again evident.

Proximity of optimal parameters to initial random guess

Our key takeaways

- There is no one "QAOA"; variants show significantly different characteristics.
- QAOA performance is very problem-dependent: ansatz-problem dependency investigation is very high priority.
- To understand QAOA better:
 - apply to diverse set of problems and track efficiency and performance;
 - investigate parameter space characteristics.

Team* (Lots of Zoom meetings)

Work in progress

A Review on Quantum Approximate Optimization Algorithm and its Variants

Kostas Blekos $^{*1},$ Dean Brand², Andrea Ceschini³, Chiao-Hui Chou⁴, Rui-Hao Li⁵, Komal Pandya⁶, and Alessandro Summer 7

Work in progress to extend the framework:

- Release as Open Source
- **Public database** of results; user updatable
- Include *many* more problems (maxcut graphs)
- Include other models (TSP, SK, ...)